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Abstract: The minimal constraints required for the definition of the reference system in the 

ITRF formulation are derived for both the one-step approach (simultaneous stacking of 

coordinate time series for all available space techniques) as well as for the currently imple-

mented two-step approach of stacking for each technique separately and combination of the 

derived station initial coordinates and velocities. Two types of minimal constraints are 

studied, the usual algebraic ones related to the variation of the unknown parameters under a 

change of the reference system known as inner constraints and kinematic ones based on the 

choice of a reference system with respect to which the apparent variation of station coordi-

nates is minimized. It is shown that under mild conditions on the approximate parameter 

values used in the linearization of the observation equations the two approaches, algebraic 

and kinematic one, become identical.  

 

 

1. Introduction 

The implementation of an International Terrestrial Reference System (ITRS) by 

means of an International Terrestrial Reference Frame (ITRF) involves three ele-

ments: 

(a) The adoption of a model of the general form ( ) ( , )
i i
t t=x F a  where the coordi-

nates 
i

x  of any ITRF station i  are expressed as functions of time t  through a 

set of parameters 
i

a  particular to each station. 

(b) Sets of available data one from each particular technique (T ) in the form of 

coordinates 
,

( )
T i k

tx  of stations i  at various “observation” epochs 
k
t , referring 

to a reference system 
T
S  particular to each technique T  different from the ref-

erence system 
ITRF

S  of the final ITRF coordinates.  

(b) The adoption of a particular criterion for the choice of the “optimal” ITRF 

reference system among all equivalent ones giving rise to the same time se-

quence of shapes for the ITRF station network.  
 
The objective is to develop a strategy for the determination of the ITRF parameters 

i
a  from the available data which has a sound theoretical basis and it is also nu-

merically feasible in view of the enormous amount of data involved.  
 



332 Zuheir Altamimi, Athanasios Dermanis 

 

The basic characteristic of all the above elements of ITRF implementation is the 

use of coordinates while the analyzed geodetic data are not capable of determining 

point coordinates but only the shape of a network of points at each observation 

epoch. And this is so because in this case coordinates have no physical substance 

whatsoever; they are only a mathematical device for determining shape via posi-

tions. Coordinates are entering the game only after we introduce an arbitrary refer-

ence system, a mathematical apparatus also without physical substance. For the 

shake of convenience the term “shape” is used here in a loose sense which becomes 

more concrete when applied to different data sets. If the scale in a technique (de-

fined by means of a particular set of clocks) is entering in the ITRF formulation, 

then “shape” means shape and size. In the SLR data where the system of reference 

to be introduced lacks only orientation since the origin is taken to be the geocenter 

a point “provided” by nature (although not without involving a mathematical defi-

nition!). In this case “shape” is the extended shape (or shape and size accordingly) 

of an extended set of points, the network points and the geocenter. As a conse-

quence of the use of coordinates with coordinate-free (coordinate invariant) obser-

vations the formulated least squares (or best estimation) problem does not have a 

unique solution. All sets of coordinates giving rise to the same network shape are 

equally valid solutions. From the algebraic point of view the design matrix trans-

forming unknown parameters into observables has a column rank deficiency d , 

equal to the number of parameters in the coordinate transformations leaving the 

observables invariant. The same rank deficiency appears in the coefficient matrix 

of the normal equations formed under the least-squares principle and a unique solu-

tion requires the introduction of an arbitrary reference system, a choice which is 

algebraically expressed by means of a set of minimal ( d  in number and independ-

ent) additional constraints. Any other set of non-minimal constraints may resolve 

the uniqueness problem but it distorts the network “shape” from its optimal form 

implied by the least squares principle. The estimates of the ITRF parameters ob-

tained in this way are (or should be) accompanied by covariance matrices which 

demonstrate the same rank deficiency. 
 
In formulating a strategy for the ITRF parameter estimation we may depart from 

theoretical optimality for the sake of numerical feasibility. Note that this has al-

ready done before the very formulation of the ITRF implementation problem: the 

rigorously optimal solution calls for the common analysis of all available original 

primary data, an approach which is beyond reach, not only because of the immense 

amount of the data but also because of the peculiarities in the models, parameters 

and processing strategies of each technique. 
 
We now return to the particular characteristics of each of the three elements of the 

ITRF implementation problem (Altamimi et al., 2002, 2007, 2008, 2011, Sillard, 

1999, Sillard & Boucher, 2001). Currently the model has the form  
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0 0
( ) ( , ) ( )

i i i i
t t t t= = + −x F a x v , (1) 

where the station parameters 
i

a  consist of their coordinates 
0i

x  at the ITRF refer-

ence epoch 
0
t  and their constant velocities 

i
v . The next model will probably be of 

the form  

1 0 1

0 0 2 0 2

3 0 3

cos(2 / )

( , ) ( ) cos(2 / )

cos(2 / )

i i

i i i i i

i i

b t T

t t t b t T

b t T

π ϕ

π ϕ

π ϕ

+⎡ ⎤
⎢ ⎥= + − + +⎢ ⎥
⎢ ⎥+⎣ ⎦

F a x v   (2) 

involving an additional annual periodic term (
0
T = 1 year) with the amplitudes 

ik
b  

and phases 
ik

ϕ , 1,2,3k = , as additional elements of each station parameters 
i

a . 

Note however that such a model cannot efficiently fit the observed “annual” varia-

tions because 
ik
b  and 

ik
ϕ  vary from year to year due to the varying weather condi-

tions. 
 
The main role of the coordinate model is to secure that the final time sequence of 

coordinates is a smooth one, reflecting the general fact that the earth surface and 

hence the ITRF network changes shape with time in a smooth way, apart from 

isolated discontinuities due to earthquakes, landslides, etc. Thus any non-linear 

variations present in the available data are attributed to observational errors and are 

removed. Note that such an analytic deterministic model is just one way to impose 

smoothness; alternatively ITRF coordinates can be modelled as stochastic proc-

esses: the high correlation of nearby values imposes smoothness. A combination of 

a deterministic parameterized analytical trend and a residual zero mean stochastic 

process is also possible. The model can also rise from geophysical reasoning: the 

current linear in time coordinate model reflects the motion of tectonic plates which 

rotate around a pole with constant angular velocity. Thus stations on a plate move 

along circular arcs which in the relatively small period of validity of an ITRF solu-

tion appear as straight lines. Note however that this justifies the model only with 

respect to the horizontal coordinate components; the vertical ones remain unaf-

fected by plate rotation. 
 
Although all data 

,

( )
T i k

tx  from each particular technique T  refer nominally to the 

same reference system 
T
S , their actual variation in time cannot be attributed to the 

effect of observational errors only. A significant part is due to instability in the 

reference frame definition and can be removed accordingly by assuming that for 

each epoch 
k
t  the data refer to a separate reference system ( )

T k
S t . Since these 

reference systems are different from the desired ITRF system 
ITRF

S , the data 

,

( )
T i k

tx  can be deprived from their dependence on ( )
T k
S t  by introducing the pa-

rameters 
,

( )
T k T k

t=q q  of the transformation connecting the different reference 

systems 
, ITRF

( ) : ( )
T k T k

T S S t→q , which are additional nuisance parameters in the 

problem. Combining the transformation  
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( )
, , , , ,

( ) , ( ) (1 ) ( ) ( )
T i k T k i k T k T k i k T k

t t s t= Φ = + +x q x R θ x d  , (3) 

, , 1, , 2, , 3, , 1, , 2, , 3, ,
[ ]

T

T k T k T k T k T k T k T k T k
s d d dθ θ θ=q  (4) 

with the ITRF coordinate model ( ) ( , )
i k i k
t t=x F a  we arrive at the observation 

equations model of the form 

( )
, , ,

( ) , ( , ) ( , , )
T i k T k i k T k i k

t t t= Φ =x q F a f q a  (5) 

to be solved on the basis of the observational outcomes 
, , ,

( ) ( ) ( )
T i k T i k T i k

t t t′ = +x x e  

affected by random zero-mean errors 
,

( )
T i k

te , by applying the least squares princi-

ple min
T

=e Pe  to all data from all techniques T  at all the corresponding epochs 

k
t  and all stations i . 
 
Once the data have been deprived from their own reference through the transforma-

tion parameters 
,T k

p , we can reformulate the ITRF problem in an (almost) coordi-

nate free way: Given the time discrete sequence of “shapes” of the sub-networks 

from each techniques at particular epochs 
k
t , connect them through their common 

tie points in order to construct a time continuous sequence of shapes of the total 

network, which when expressed in a particular reference system 
ITRF

S  as coordi-

nate functions ( )
i
tx  should comply with the ITRF model ( ) ( , )

i i
t t=x F a . We can-

not have a genuine coordinate-free version of the problem because the smoothness 

of the final ITRF time-continuous sequence of shapes is defined via a particular 

reference system. For example for the linear in time coordinate model 

0 0
( ) ( )

i i i
t t t= + −x x v  it is not possible to define a linear in time sequence in shapes 

without resorting to coordinates. There is no such thing as a linear in time deforma-

tion for a network. This assertion reveals the somewhat arbitrary character of any 

coordinate based model, which is a matter of algebraic convenience rather than a 

demonstration of a physical fact. Linearity in time is not preserved under a change 

of coordinate system which is an absolutely permissible action from the physical 

point of view: 

( ) ( ) ( )( ) ( ), ( ) 1 ( ) ( ) ( ) ( )
i i i
t t t s t t t tx q x R θ x d� = Φ = + + =  

 ( ) ( )
0 0

1 ( ) ( ) [ ( ) ] ( )
i i

s t t t t tR θ x v d= + + − +  (6) 

is a non linear function of time and does not have the form 
0 0

( ) ( )
i i i
t t t= + −x x v� � � . 

Despite this fact the adopted coordinate model allows the determination of a unique 

“optimal” time-continuous sequence of shapes from the available data through the 

least-squares principle. On the contrary, the model parameters 
i

a  (e.g. 
0i

x , 
i

v ) 

cannot be uniquely determined since they are not estimable quantities for the data 

in hand. 
 
We may select one of the reference systems compatible with the model by ignoring 
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at first the requirement of an optimal system and choose instead a more-or-less 

arbitrary one, through the use of appropriate additional minimal constraints, which 

resolve the reference system choice problem without affecting the optimal network 

shape at any epoch. In this case the a-posteriori application of the optimality crite-

rion with the use of the general transformation law (6) will lead to optimal coordi-

nate functions which do not comply with the selected model  
0 0

( ) ( )
i i i
t t t= + −x x v� � � .  

 
To overcome this serious problem a compromise must be made. Noting that all 

reference systems involved (per technique and epoch or for the ITRF) are closed to 

each other we may restrict our choice to coordinate transformations “close to the 

identity” and apply the ITRF reference system optimality criterion not to all possi-

ble transformations, not even to all possible close to the identity ones, but rather to 

the restricted class of transformations  ( ) ( )
i i
t t↔x x�   which approximately pre-

serve the model form, i.e. those for which if  
0 0

( ) ( )
i i i
t t t= + −x x v   then  

0 0
( ) ( )

i i i
t t t≈ + −x x v� � � . 

 
With respect to the optimality criterion for the choice of the ITRF reference sys-

tem, there are two possible alternatives. The first, which we will call “algebraic”, is 

based on the analytical form of the problem and seeks a unique solution by mini-

mizing the sum of squares of the deviations of all or some selected subset of the 

unknowns from prescribed approximate values. This approach has been introduced 

in geodesy by Meissl (1965, 1969) with his famous inner constraints (see also, 

Blaha, 1971, 1982, Grafarend and Schaffrin, 1973, 1976, Dermanis, 2003). The 

inner constraints are additional constraints which help realize a unique solution 

namely the one minimizing the above sum of squares. The second choice, which 

we will call “kinematic”, is seeking directly conditions (constraints) which will 

lead to a reference system such that the apparent motion of the network points with 

respect to it will be minimized in some prescribed sense. 
 
The solution departs from the observation equations (6) having the form 

, , , 0 0 , ,
( ) (1 ) ( )[ ( ) ]

T i k T k T k i k i T k T k
t s t t= + + − + +x R θ x v d e , 

VLBI,SLR,GPS,DORIST = ,      1,2,...,i �= ,    1,2,...,
T

k n= , (7) 

where different transformation parameters 
,T k

q  according to (4) are considered for 

each technique and each observation epoch within any particular technique, while 

,T k
e  are the observational errors. Following the standard procedure in ITRF formu-

lation the problem is separated into two sequential steps for computational conven-

ience. In the first step, which is called “stacking”, the observation equations (7) are 

analyzed separately for each technique in order to obtain the optimal parameters 

, 0T i
x , 

,T i
v  for the relevant stations. In the second step, which is called “combina-

tion”, the ITRF optimal values 
0i

x , 
i

v  are obtained from the previous estimates 

, 0T i
x , 

,T i
v , with the help of an “observation equations” model of the form 
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,0

,

,0 0

, 0

( , , )

( , , )

T i

T i

T i T i i

T i T i i

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x
x

v v

ex g q x v

v g q x v e
, (8) 

which involves the parameters 
T

q  transforming coordinates and velocities from the 

reference system adopted in each technique to the final ITRF system. In both steps 

we have two common characteristics (a) the presence of “nuisance” transformation 

parameters 
,T k

q  or 
T

q  and (b) the need to select among all permissible reference 

systems the “optimal” one. Note that although the transformation parameters are of 

no direct interest for the ITRF implementation problem they are needed for the a 

posteriori analysis of Earth Orientation Parameter (EOP) series which will relate 

the ITRF reference system with the corresponding system of the ICRF (Interna-

tional Celestial Reference Frame) involving the direction parameters of extragalac-

tic radio sources participating in VLBI observations. In fact EOP data can also be 

treated simultaneously with the coordinate time series data, since the two correlated 

sets are connected by their cross-covariance matrix. We neglect here the simulta-

neous treatment of EOP series, since it has no effect on the derived partial inner 

constraints with respect to coordinates-velocities and/or to nuisance transformation 

parameters. 
 
The presence of nuisance parameters and the reference system choice problem does 

not allow the easy separation of the original “simultaneous stacking” problem of 

equations (7) for all techniques, into a rigorous separation in two stages utilizing 

e.g. the addition theorem of the normal equations formed separately from the data 

of each technique. The determination of such a rigorous two step numerically fea-

sible approach remains an open problem. 
 
Another problem that takes us even further from the traditional data adjustment 

problem with no rank deficiency, is the fact that the covariance matrix of the data is 

(or ought to be) singular and cannot be inverted to obtain the weight matrix enter-

ing in the least square principle. Indeed coordinates 
,

( )
T i k

tx  provided from each 

technique are derived from singular normal equations with the use of some addi-

tional minimal constraints, i.e. constrains which lead to the choice of a reference 

system without affecting the optimal shape of the network. In such a case the co-

variance matrix of the coordinates is a generalized inverse of the normal equations 

coefficient matrix and has the same rank deficiency d . We shall assume for the 

time being that the proper weight matrices for the coordinate observations are 

available, although this is a problem that requires further theoretical investigation. 

A convenient choice of coordinate weight matrices are the normal equations coef-

ficient matrix in the relevant data adjustment. The more general class of weight 

matrices leaving estimable parameters invariant and equal to their optimal values is 

given by Rao’s unified theory (Rao, 1971, 1973). 
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2. The classical theory of inner and partial inner constraints 

We shall give a short presentation of the classical theory of Meissl in a slightly 

generalized way that it can be applied to our problem (Dermanis, 1994a, 1994b). 

Consider a set of observables a

y , which are invariant under certain coordinate 

transformations and are modelled as functions ( )a a

=y f x  of parameters a

x  which 

depend on the use of a particular coordinate system. In such a case it is not possible 

to recover the unknowns a

x  by only applying the least squares principle 

min
T

=e Pe  to the observations ( )b a a
= + = +y y e f x e  corrupted by additive noise 

e . Upon linearization the problem transforms to = +b Ax e , where, for some se-

lected approximate values 0
x , ( )

0
/

a

= ∂ ∂
x

A f x  is the design matrix, 
0 0( )b b

= − = −b y y y f x  are the reduced observations and 0a

= −x x x  are the cor-

rections to the approximate values serving as the new unknowns. Let ( , )a a

=x G p x�  

be the transformation of the unknowns caused by a change of reference system 

involving transformation parameters 
1 2 3 1 2 3

[ ]
T

g g gλ ψ ψ ψ=p . Note that we 

have changed the notation to p , λ , ψ , g  in order to distinguish between the arbi-

trary change of the reference system to which the unknowns refer from the previ-

ous q , s , θ , d , which refer to the nuisance unknown transformation parameters 

of the various adjustment models, which connect the reference system of the un-

knowns to that of the observations. Then for any value of p , if a

x  is a solution to 

the least squares problem then a

x�  is also a solution, since observables are invariant 

under coordinate transformations and ( ) ( )a a a a

= = =y f x f x y� � . Taking into account 

that for =p 0 , ( , ) ( , )a a a

=

= =

p 0
G p x G 0 x x  we have in the linearized case 

0
0, 0,

( , ) ( , )
a

a a a a a

= =

∂ ∂⎛ ⎞
= ≈ + ≈ + ≡ +⎜ ⎟∂ ∂⎝ ⎠p x p x

G G
x G p x G 0 x p x p x Ep

p p
� . (9) 

Upon subtraction of 0
x  from both sides, the transformation becomes = +x x Ep�  

where ( ) 0
,

/
=

= ∂ ∂
p 0 x

E G p . Since a a

=y y�  it also holds that  

0 0a a

≡ − = − ≡y y y y y y� �    and   = = + = =y Ax Ax AEp y Ax� �  for every p  so that 

=AE 0 . (10) 

The above relation states that every column 
k
e , 1,...,k d= , of [ ]1 d

=E e e�  be-

longs to the null space of A , i.e. to the set ( ) { | }� = =A x Ax 0  of all x  which A  

maps to zero. Furthermore since the dimension of ( )� A  is equal to the rank defi-

ciency d , the d  columns of E  form a basis for ( )� A . Hence every x  such that 

=Ax 0  can be uniquely expressed as a linear combination 
1

d

k k k
p

=

= =Σx e Ep . 

Any solution of the normal equations ˆ =�x u  ( T
=� A PA , T

=u A Pb ) derived 

from the application of the least squares principle gives rise to the same value 
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ˆ ˆ=y Ax  of the “adjusted” observables ŷ . Let us assume now that we have at hand 

one solution x̂  of the normal equations and we seek to determine the unique one 

ˆ

+
x , which satisfies the “minimum norm” principle 

2

ˆ ˆ ˆ min
T

+ + +
= =x x x  among all 

solutions of the normal equations. In such a case ˆ ˆ

+
=Ax Ax , ˆ ˆ( )

+
− =A x x 0  and 

ˆ ˆ ( )�
+ +
− = ∈x x Ep A  for an appropriate set of transformation parameters 

+
p . 

Therefore the solution 
+

p  satisfying ˆ ˆ ˆ ˆ( ) ( ) ( ) minT T
ϕ

+ + + + +
= = + + =p x x x Ep x Ep  is 

derived from ˆ/ 2( )Tϕ
+ +

∂ ∂ = + =p x Ep E 0 , yielding 1 ˆ( )T T−

+
= −p E E E x  and 

1ˆ ˆ ˆ ˆ( )T T−

+ +
= + = −x x Ep x E E E E x . This minimum norm solution ˆ

+
x  obviously 

satisfies 1ˆ ˆ ˆ( )T T T T T−

+
= − =E x E x E E E E E x 0 . 

 
Thus an alternative approach to directly obtain the minimum norm solution ˆ

+
x  of 

the least squares problem, without the need for any prior solution x̂  of the normal 

equations, is to apply the least squares principle under the limitations posed by the 

additional “inner constraints” T
=E x 0 . The matrix E  can be determined from the 

procedure implicit in equation (9), i.e. by ( ) 0
,

/
=

= ∂ ∂
p 0 x

E G p , where ( , )a a

=x G p x�  

is the transformation of the unknown parameters under an arbitrary change of the 

reference system with transformation parameters p .  
 
In the geodetic case where the unknowns are coordinate corrections, the inner con-

straints lead to a solution depending on the approximate coordinates, which define 

an approximate shape with a reference system attached to it. The inner constraints 

take the optimal network shape uniquely defined by the least squares criterion and 

position it in a way that it best fits the approximate network. Then the coordinate 

system of the approximate coordinates passes on to that of the optimal shape and 

thus “optimal” coordinates are obtained. The name “inner constraints” refers to the 

difference with the previous external constraints of fixing the necessary number of 

point coordinates, e.g. two points in a triangulation planar network or one point and 

one azimuth in a planar network with also distance observations. 
 
In classical triangulation networks coordinates are not the only parameters. Instead 

of isolated angles the directions were observed from each station to all others that 

were visible, as readings on the horizontal theodolite circle. Thus the azimuth of 

the zero reading appeared as an additional unknown per station. These nuisance 

unknowns did not participate in the inner constraints and in fact were eliminated 

from the very beginning by replacing directions with their differences. It is also 

possible to apply the best fitting of the optimal network shape not to the whole 

approximate network but only to a chosen approximate sub-network. For example 

when a new network overlapping with a higher order one is adjusted, a best fit with 

respect to the common points can be implemented. In such cases the (total) inner 

constraints 
1

1 2

2

T
T T

⎡ ⎤⎡ ⎤= =⎢ ⎥⎣ ⎦
⎣ ⎦

x
E x E E 0

x
 are replaced (rearranging the order of the 

unknowns as necessary) by the “partial inner constraints” (Fritz & Schaffrin, 1981) 
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1

1 1 1

2

T T
⎡ ⎤

⎡ ⎤ = =⎣ ⎦ ⎢ ⎥
⎣ ⎦

x
E 0 E x 0

x
. Accordingly the minimization principle  

1 1 2 2
min

T T T
= + =x x x x x x   is replaced by 

1 1
min

T
=x x .  

 

 

3. Approximate coordinate and velocity transformations and model pre-
serving transformations 

The general similarity transformation ( ) ( )( ) 1 ( ) ( ) ( ) ( )
i

t t t t tλ= + +x R ψ x g�  from the 

coordinates of a reference system to those of another with scale factor 1 λ+ , small 

angles 
i

ψ  and small displacements 
i

g , can be simplified using the sufficient ap-

proximation by ( )( ) [ ( ) ]t t= − ×R ψ I ψ  so that 

( ) ( ) ( ) ( ) [ ( ) ] ( ) ( )t t t t t t tλ= + + × +x x x x ψ g� . (11) 

Here [ ]= ×A a  denotes the antisymmetric matrix having a  as its axial vector, com-

pletely defined by the relations 
32 1

A a= , 
13 2
A a= , 

21 3
A a=  . Second order terms in 

the small quantities, λ , 
1

ψ , 
2

ψ , and 
3

ψ  have been ignored. The corresponding 

transformation for velocities follows by differentiation 

( )( ) ( ) ( ) 1 ( ) ( ) [ ( ) ] ( ) [ ( ) ] ( ) ( )t t t t t t t t t tλ λ= + + + × + × +x x x x ψ x ψ g��

� �� � � , (12) 

or after setting ( ) ( )t t=v x� , ( ) ( )t t=v x
�

� �  and taking into account that the components 

of ( )tv  are also small quantities the corresponding transformation for velocities 

becomes 

( ) ( ) ( ) ( ) [ ( ) ] ( ) ( )t t t t t t tλ= + + × +v v x x ψ g�

� �� . (13) 

From the linearization of 1(1 ) ( )T
λ

−

= + −x R x g� , the inverses of the transforma-

tions (13) become 

( ) ( ) [ ( ) ] ( ) ( ) ( ) ( )t t t t t t tλ≈ − × − −x x x ψ x g� � � , (14) 

( ) ( ) [ ( ) ] ( ) ( ) ( ) ( )t t t t t t tλ≈ − × − −v v x ψ x g�

� �� � � . (15) 

In the ITRF case the coordinate functions must conform with the model 

0 0
( ) ( )t t t= + −x x v  where 

0 0
( )t=x x  and v  are constants, so that after removing 

second order terms in λ , λ� , ψ , ψ�  and v  the transformation into an other coordi-

nate system becomes 

0 0 0 0
( ) ( ) ( ) [ ] ( ) ( )t t t t t tλ= + − + + × +x x v x x ψ g�  (16) 

0 0
( ) ( ) [ ] ( ) ( )t t t tλ= + + × +v v x x ψ g�

� �� . (17) 
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In order for the model to be preserved we must have 
0 0

( ) ( )t t t= + −x x v� � �  and v�  

constant. But ( )tv�  is constant if ( )tλ� , ( )tψ�  and ( )tg�  are constant, i.e. when the 

transformation parameter functions have the form 

0 0
( ) ( )t t t= + −ψ ψ ψ� ,   

0 0
( ) ( )t t tλ λ λ= + −

� ,   
0 0

( ) ( )t t t= + −g g g�  (18) 

which are also sufficient conditions, with constant 
0 0

( )t=ψ ψ , 
0 0

( )tλ λ= , 

0 0
( )t=g g , ψ� , λ�  and g� . Under these restrictions we arrive at the smaller class of 

model preserving transformations 

( ) ( )0 0 0 0 0 0 0 0 0 0 0
( ) [ ] ( ) [ ] ( )t t t t tx x x x ψ g v x x ψ g x v�

� �� � �λ λ≈ + + × + + − + + × + ≡ + −  (19) 

0 0
( ) [ ]t λ≈ + + × + ≡v v x x ψ g v�

� �� � . (20) 

Therefore the transformation laws for the ITRF model parameters under a change 

of coordinate system are 

0 0 0 0 0 0 0
[ ]λ≈ + + × +x x x x ψ g�  (21) 

0 0
[ ]λ≈ + + × +v v x x ψ g�

� ��  (22) 

The corresponding inverse transformations are 

0 0 0 0 0 0 0
[ ] λ≈ − × − −x x x ψ x g� � �  (23) 

0 0
[ ] λ≈ − × − −v v x ψ x g�

� �� � �  (24) 

In data analysis we deal not directly with 
0

x  and v , but rather with corrections 
ap

0 0 0δ = −x x x  and ap
δ = −v v v  to their approximate values ap

0x  and ap
v . Assum-

ing common approximate values (e.g. from a previous version of the ITRF) for 

both coordinate systems we obtain the transformation laws for corrections  

ap ap

0 0 0 0 0 0 0[ ]δ δ λ= + + × +x x x x ψ g� , (25) 

ap ap

0 0[ ]δ δ λ≈ + + × +v v x x ψ g�

� �� , (26) 

and their respective inverses 

ap ap

0 0 0 0 0 0 0[ ]δ δ λ≈ − × − −x x x ψ x g� , (27) 

ap ap

0 0[ ]δ δ λ≈ − × − −v v x ψ x g�

� �� . (28) 
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4. The stacking problem and the corresponding inner constraints 

As already mentioned the stacking problem deals with the estimation of initial 

coordinates and velocities of the ITRF model from “observed” coordinates at dif-

ferent epochs, assuming that they refer to a different coordinate system for each 

epoch. Stacking is performed for each technique separately but it has the same 

structure as the simultaneous stacking for data from all techniques, which is an 

alternative to the two-step approach of “stackings per technique” and “combina-

tion”. For this reason we shall drop in our rotation the dependence to any particular 

technique and write the observation equations (7) in the simpler form 

0 0
( ) (1 ) ( )[ ( ) ]k k

i i k k k i k i k i
t s t t= = + + − + +x x R θ x v d e , (29) 

where 
k

θ , 
k

d , 
k
s  are the transformation parameters from the ITRF reference sys-

tem 
ITRF

S  to the particular technique epoch system ( )
T k
S t . In the linear approxi-

mation of the form of equation (16) the observation equations become 

0 0 0 0
( ) [ ]k k

i i k i k i i k k i
t t s= + − + + × + +x x v x x θ d e  (30) 

With the use of approximate values ap

0ix , ap

i
v  ( ap

0
k
s = , ap

k
=θ 0 , ap

k
=d 0 ), we may 

switch to the corrections 
0i

δx , 
i

δ v  and the reduced observations 
ap ap ap

0 0( ) [ ( ) ]k k k k

i i i i i k i
t tδ = − = − + −x x x x x v , so that the observation equations be-

come 

ap ap

0 0 0 0( ) [ ]k k

i i k i k i i k k i
t t sδ δ δ= + − + + × + +x x v x x θ d e  (31) 

We may rewrite the above observation equations in the more compact form 

[ ] 0

0 0 0
( ) [ ]

i

k

ik ap ap k k

i k i i k i i i k i

i

k

t t

s

δ
δ

δ

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤= − + × + = + +⎣ ⎦⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

a z

θ
x

x I I x I x d e A a A z e
v

 (32) 

where 0i

i

i

δ

δ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x

a

v

 stands now for the station i  ITRF parameters 
0i

δx  and 
i

δ v , 

while 
k

z  are the transformation parameters from the ITRF reference system to the 

one of each particular epoch 
k
t  (and technique). Note that some stations may be 

missing for particular epochs. 

For the determination of the inner constraints matrix we shall look at the transfor-

mation = +x x Ep�  of the ITRF parameters under a model-preserving change of 

coordinates with rotation angles 
0 0

( ) ( )t t t= + −ψ ψ ψ� , scale parameter 

0 0( ) ( )t t tλ λ λ= + −
�  and displacements 

0 0
( ) ( )t t t= + −g g g� . The relevant transfor-

mation equations for each station are given from equations (25) and (26) which can 
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be combined into 

ap ap
0 0 0 0 0 0 0

ap ap

0 0

[ ]

[ ]

i i i i

i

i i i i

x x x ψ x g
a

v v x ψ x g

�

�

�

� � �

δ δ λ

δ δ λ

⎡ ⎤+ × + +⎡ ⎤
= ≈ =⎢ ⎥⎢ ⎥

+ × + +⎣ ⎦ ⎣ ⎦
 

 

0

0

ap ap
0 00 0

ap ap

0 0

[ ]

[ ] i

i i i

i

i i i

a

ψ

g

x x I x 0 0 0
a E p

v ψ0 0 0 x I x

g

�

�

�

δ λ

δ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤×⎡ ⎤

= + ≡ +⎢ ⎥⎢ ⎥⎢ ⎥
×⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 

In order to see how the remaining “nuisance” parameters 
k

z  transform under a 

change of coordinate system we will apply the inverse transformations (27), (28) to 

each station to obtain 

0 0 0 0 0 0 0
[ ]

ap ap

i i i i
δ δ λ≈ − × − −x x x ψ x g� , (34) 

0 0
[ ]

ap ap

i i i i
δ δ λ≈ − × − −v v x ψ x g�

� �� , (35) 

and replace these in the observation equations (31) to obtain 

ap ap

0 0 0 0( ) [ ]k k

i i k i k i i k k i
t t sδ δ δ= + − + + × + + =x x v x x θ d e  

 
0 0 0 0 0 0 0 0 0

[ ] ( ){ [ ] }ap ap ap ap

i i i k i i it tx x ψ x g v x ψ x g�

� �� �δ λ δ λ= − × − − + − − × − − +  

 ap ap

0 0[ ]
k

k i i k k i
s x x θ d e+ + × + + =  

 ap

0 0 0 0 0 0 0 0( ) [ ][ ( ) ] [ ( ) ] ap

i k i i k k k k it t t t s t tx v x θ ψ ψ x�

�� �δ δ λ λ= + − + × − − − + − − − +  

 
0 0

[ ( ) ] k

k k i
t td g g e�+ − − − +  (36) 

If we on the other hand we write directly the observation equations (31) in the new 

frame we get 

ap ap

0 0 0 0( ) [ ]k k

i i k i k i i k k i
t t sδ δ δ= + − + + × + +x x v x x θ d e� �

� � �  (37) 

Comparison of the two above forms reveals the transformation rule for the remain-

ing parameters 

0 0
( )

k k k
t t= − − −θ θ ψ ψ�

� ,   
0 0

( )
k k k

t t= − − −d d g g�

� ,   
0 0

( )
k k k
s s t tλ λ= − − −

�

� , (38) 

which combined give 

0 0

0 0

0 0

( )

( )

( )

k k k

k k k k

k k k

t t

t t

s s t t

θ θ ψ ψ

z d d g g

�

�

�

��

�

� λ λ

⎡ ⎤ − − −⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
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0

0

0

0

0

0

( )

( )

0 0 1 0 0 ( )
k

k k

k k k

k k

t t

t t

s t t

z

ψ

g
θ I 0 0 I 0 0

d 0 I 0 0 I 0 z E p
ψ

I
g

�

�

�

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= + − − − ≡ +⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (39) 

Combining (33) for each station and (39) for each observation epoch 
k
t  we arrive 

at the inner constraints matrix E  as follows 

1 1

1 1

1
1 1

1 11

� �

M M

�� �

M MM

+⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

≡ = = + ≡ + ≡− −⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

a a

a a

a

z

z z

z z

a E p Ea a

a E p Ea a
Ea a

p p
Ez z

z zz E p E

z z pz E p E

�

� �� �

�
�

�

� �� �

⎡ ⎤
+⎢ ⎥

⎣ ⎦

a
Ep

z
. (40) 

The inner constraints themselves become 

T T T T T

a z x a

a a
0 E E E E x E a

z z

⎡ ⎤ ⎡ ⎤
⎡ ⎤= = = + =⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 
1 1

1 1

� M

T T T T

� M

a a z z

a z

E E E E

a z

� � � �

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= + =⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 

ap

0 0

1 1

0

1 1

ap

0 0

1 1

ap1 1
0 0

1 1

0

1 1

ap

0 0

1 1

[ ]

( )

[ ] ( )

( )

( ) ( )

i k

� M

i i k

i k

� M

i k

i k

� M

T

i i k� M

T T i k

i k � M

i k

i i k k

i k

� M

i k k

i k

� M

T

i i k k

i k

s

t t

t t

t t s

= =

= =

= =

= =

= =

= =

= =

⎡ ⎤
− × −⎢ ⎥

⎢ ⎥
⎢ −
⎢
⎢
⎢ −
⎢= + = ⎢
− × − −⎢
⎢
⎢

− −⎢
⎢
⎢ − −
⎢⎣ ⎦

∑ ∑

∑ ∑

∑ ∑
∑ ∑

∑ ∑

∑ ∑

∑ ∑

a z

x x θ

x d

x x

E a E z

x v θ

v d

x v

δ

δ

δ

δ

δ

δ

⎥
⎥
⎥
⎥
⎥ =⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0 . (41) 
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The above inner constraints can be separated into 6 groups: 

The 3 orientation inner constraints 

ap

0 0

1 1

[ ]
� M

i i k

i k

δ

= =

× + =∑ ∑x x θ 0 ,  (42a) 

the 3 translation inner constraints 

0

1 1

� M

i k

i k

δ

= =

− =∑ ∑x d 0 , (42b) 

the scale inner constraint 

ap

0 0

1 1

( ) 0
� M

T

i i k

i k

sδ

= =

− =∑ ∑x x , (42c) 

the 3 orientation rate inner constraints 

ap

0 0

1 1

[ ] ( )
� M

i i k k

i k

t tδ

= =

× + − =∑ ∑x v θ 0 , (42d) 

the 3 translation rate inner constraints 

0

1 1

( )
� M

i k k

i k

t tδ

= =

− − =∑ ∑v d 0 , (42e) 

and the scale rate inner constraint 

ap

0 0

1 1

( ) ( ) 0
� M

T

i i k k

i k

t t sδ

= =

− − =∑ ∑x v . (42f) 

These are the “total” inner constraints leading to a minimum norm solution satisfy-

ing  

2 T

T T
a a a

a a z z

z z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

 2

0 0
( ) ( ) minT T T T

i i i i k k k k k

i k

sx x v v θ θ d dδ δ δ δ= + + + + =∑ ∑  (43) 

Two sets of partial inner constraints derive from the above total ones: 

Considering only coordinates and velocities the partial inner constraints  

1
i

T � T

i i=

= =Σ
a a

E a E a 0   satisfying  
0 0

( ) minT T

i i i i

i

δ δ δ δ+ =∑ x x v v ,  take the form  
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ap

0 0

1

[ ]
�

i i

i

δ

=

× =∑ x x 0 ,  
0

1

�

i

i

δ

=

=∑ x 0 , ap

0 0

1

( ) 0
�

T

i i

i

δ

=

=∑ x x , (44a) 

ap

0

1

[ ]
�

i i

i

δ

=

× =∑ x v 0 , 
1

�

i

i

δ

=

=∑ v 0 , ap

0

1

( ) 0
�

T

i i

i

δ

=

=∑ x v . (44b) 

Note that the three first constraints (44a) are the familiar ones for non-deforming 

networks. 

Considering only transformation parameters the partial inner constraints  

1

k

M

T T

k

k=

= =∑z z
E z E z 0   satisfying  2( ) minT T

k k k k k k
s+ + =Σ θ θ d d ,  become 

1

M

k

k=

=∑θ 0 , 
1

M

k

k=

=∑d 0 , 
1

0

M

k

k

s

=

=∑ , (45a) 

0

1

( )
M

k k

k

t t

=

− =∑ θ 0 , 
0

1

( )
M

k k

k

t t

=

− =∑ d 0 , 
0

1

( ) 0
M

k k

k

t t s

=

− =∑ . (45b) 

We have derived here the most complete set of constraints, referring to the rank 

deficiency with respect to scale, position and orientation. In the particular case that 

scale and/or position (e.g., geocentric reference system from SLR) can be deter-

mined from the available data the corresponding constraints must be removed. The 

above constraints (42), (44), (45) apply to the stacking for any particular space 

technique T , where the index T  has been removed for simplicity from 
,0T i

δ x , 

,T i
δ v , 

,T k
θ , 

,T k
d , 

,T k
s . The same holds true for the simultaneous stacking of all 

space techniques in the one-step approach to the ITRF formulation, with parame-

ters 
0i

δx , 
i

δ v , 
,T k

θ , 
,T k

d , 
,T k

s . In this case however, an additional summation 

1

K

T =
Σ  over all the K space techniques must be applied to the constraints (42) and 

(45) and their corresponding optimality minimization criteria, replacing the sum-

mation 
1

M

k=
Σ  with the double summation 

1 1

K M

T k= =

Σ Σ .  

 

 

5. The combination problem and the corresponding inner constraints 

In the combination problem the estimates of initial coordinates and velocities 

0T i
δx , 

Ti
δ v , 1,...,

T
i n= , obtained in the previous stacking step for each technique 

T  separately, are used as “observations” in order to obtain common estimates 

0i
δx , 

i
δ v  of the corresponding ITRF model parameters. As already shown, in 

order to preserve the linear-in-time coordinate model the transformation parameters 

from the ITRF reference system 
ITRF

S  to the system 
T
S  of each technique must 

have the form 
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0 0
( ) ( )

T T T
t t t= + −θ θ θ� , 

0 0
( ) ( )

T T T
t t t= + −d d d� , 

0 0
( ) ( )

T T T
s t s t t s= + − � . (46) 

Applying equations (25) and (26) to each station i  with 
0 0T i

δ δ→x x� , 
Ti

δ δ→v v� , 

0 0i
δ δ→x x , 

i
δ δ→v v , ap ap

0 0i
→x x  and 

0 0T
→ψ θ , 

0 0T
→g d , 

0 0T
sλ → , 

T
→ψ θ�� , 

T
→g d�� , 

T
sλ →

�

� , and taking into account the presence of observational noise we 

obtain the observation equations 

0

ap ap

0 0 0 0 0 0 0[ ]
T i

T i i i T T i T
sδ δ= + × + + +

x
x x x θ x d e , (47) 

ap ap

0 0[ ]
Ti

Ti i i T T i T
sδ δ= + × + + +

v
v v x θ x d e� �

� , (48) 

On the basis of the above observation equation for all techniques and all stations in 

each technique estimates will be obtained for the unknown parameters 
0i

δx , 
i

δ v , 

as well as of the “nuisance” parameters 
0T

θ , 
T

θ� , 
0T

d , 
T

d� , 
0T

s , 
T
s� , for all tech-

niques.  

In order to obtain the inner constraints for the removal of the rank deficiency, we 

introduce an arbitrary model-preserving coordinate transformation with parameters 

0
ψ , 

0
g , 

0
λ , ψ� , g� , λ� . Applying the inverse transformations (27) and (28) for each 

station, namely  

ap ap

0 0 0 0 0 0 0[ ]
i i i i

δ δ λ≈ − × − −x x x ψ x g� , (49) 

ap ap

0 0
[ ]

i i i i
δ δ λ≈ − × − −v v x ψ x g�

� �� . (50) 

to the observation equations (47), (48) we obtain 

0

ap ap

0 0 0 0 0 0 0[ ]
T i

T i i i T T i T
sδ δ= + × + + + =

x
x x x θ x d e  

 
0

ap ap ap ap

0 0 0 0 0 0 0 0 0 0 0[ ] [ ]
T i

i i i i T T i T
sδ λ= − × − − + × + + + =

x
x x ψ x g x θ x d e�  

 
0

ap ap

0 0 0 0 0 0 0 0 0[ ]( ) ( ) ( )
T i

i i T T i T
sδ λ= + × − + − + − +

x
x x θ ψ x d g e� , (51) 

ap ap

0 0[ ]
Ti

Ti i i T T i T
sδ δ= + × + + + =

v
v v x θ x d e� �

�  

 ap ap ap

0 0 0 0[ ] [ ]
Ti

ap

i i i i T T i T
sδ λ= − × − − + × + + + =

v
v x ψ x g x θ x d e� � �

� �� �  

 ap ap

0 0[ ]( ) ( ) ( )
Ti

i i T T i T
sδ λ= + × − + − + − +

v
v x θ ψ x d g e� � �

� �� � , (52) 

If on the other hand we write the observation equations directly into the new sys-

tem as 

0

ap ap

0 0 0 0 0 0 0[ ]
T i

T i i i T T i T
sδ δ= + × + + +

x
x x x θ x d e� �

� � , (53) 

ap ap

0 0[ ]
Ti

Ti i i T T i T
sδ δ= + × + + +

v
v v x θ x d e

� �

� � �

� � , (54) 
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comparison of (51) with (53) and of (52) with (54) reveals the transformation laws 

0 0 0T T
= −θ θ ψ� , 

0 0 0T T
= −d d g� , 

0 0 0T T
s s λ= −� , (55a) 

T T
= −θ θ ψ

�

� �

� , 
T T
= −d d g

�

� �

� , 
T T
s s λ= −

��

� � . (55b) 

These together with the direct transformations (25) and (26) applied to each station, 

namely 

ap ap

0 0 0 0 0 0 0[ ]
i i i i

δ δ λ= + × + +x x x ψ x g� , (56) 

ap ap

0 0[ ]
i i i i

δ δ λ≈ + × + +v v x ψ x g�

� �� , (57) 

form the basis for the determination of the inner constraint matrix. Combining (56) 

and (57) we have 

ap ap
0 0 0 0 0 0 0

ap ap

0 0

[ ]

[ ]

i i i i

i

i i i i

⎡ ⎤+ × + +⎡ ⎤
≡ ≈ =⎢ ⎥⎢ ⎥

+ × + +⎣ ⎦ ⎣ ⎦

x x x ψ x g
a

v v x ψ x g

�

�

�

� � �

δ δ λ

δ δ λ
 

 

0

0

ap ap
0 00 0

ap ap

0 0

[ ]

[ ] i

i i i

i

i i i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤×⎡ ⎤

= + ≡ +⎢ ⎥⎢ ⎥⎢ ⎥
×⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a

ψ

g

x x I x 0 0 0
a E p

v ψ0 0 0 x I x

g

�

�

�

δ λ

δ

λ

. (58) 

and jointly for all stations 

11 1

�
� �

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥≡ = + ≡⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a

a

a

Ea a

a p E p

a a E

�

� � � �

�

  (59) 

Combining (55a) and (55b) we have 

0
0 0

0
0 0

0
0 0

T

T
T

T
T

T
T

T T T

TT

T
T

T
T

s
s

s
s

λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥≡ = − = − ≡ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

z

θ θ ψ

d d g

z z p z E p
θ ψθ

d gd

�

�

�

�

�
�

�
�

�

� �

�

�

�

�

�

, (
T

= −
z

E I ). (60) 
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or jointly for all techniques 

11 1

K
K K

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥≡ = + ≡⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

z

z

z

Ez z

z p E p

z z E

� � � �  (61) 

For all the unknown parameters for the stations 1,2,...,i �=  and techniques 

1,2,...,T K= , the transformation law is 

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ≡ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

a

z

Ea a a
p Ep

Ez z z

�

�

. (62) 

and the inner constraints become 

1 1

i T

� K

T T T T T T T

i T

i T= =

⎡ ⎤ ⎡ ⎤
⎡ ⎤= = = + = + =⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑a z a z a z

a a
0 E E E E a E z E a E z

z z
 

 

ap

0 0 0

1 1

0 0

1 1

ap

0 0 0

1 1

ap

0

1 1

1 1

ap

0

1 1

[ ]

( )

[ ]

( )

� K

i i T

i T

� K

i T

i T

� K

T

i i T

i T

� K

i i T

i T

� K

i T

i T

� K

T

i i T

i T

s

s

= =

= =

= =

= =

= =

= =

⎡ ⎤
− × −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥= =
⎢ ⎥
− × −⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

x x θ

x d

x x

0

x v θ

v d

x v

�

�

�

δ

δ

δ

δ

δ

δ

. (63) 

The above inner constraints can be separated into 6 groups: 

The 3 orientation inner constraints 

ap

0 0 0

1 1

[ ]
� K

i i T

i T

δ

= =

× + =∑ ∑x x θ 0 ,  (64a) 

the 3 translation inner constraints 

0 0

1 1

� K

i T

i T

δ

= =

− =∑ ∑x d 0 , (64b) 
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the scale inner constraint 

ap

0 0 0

1 1

( ) 0
� K

T

i i T

i T

sδ

= =

− =∑ ∑x x , (64c) 

the 3 orientation rate inner constraints 

ap

0

1 1

[ ]
� K

i i T

i T

δ

= =

× + =∑ ∑x v θ 0� , (64d) 

the 3 translation rate inner constraints 

1 1

� K

i T

i T

δ

= =

− =∑ ∑v d 0� , (64e) 

and the scale rate inner constraint 

ap

0

1 1

( ) 0
� K

T

i i T

i T

sδ

= =

− =∑ ∑x v � . (64f) 

These are the “total” inner constraints leading to a minimum norm solution satisfy-

ing  

2 T

T T
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x

x x z z

z z z

 

  2 2

0 0 0 0 0 0 0
( ) ( ) minT T T T T T

i i i i T T T T T T T T T T

i T

s s= + + + + + + + =∑ ∑x x v v θ θ d d θ θ d d� � � �

�δ δ δ δ  (65) 

Considering only coordinates and velocities, the partial inner constraints 

1
i

T � T

i i=

= =Σ
a a

E a E a 0  satisfying 
0 0

( ) minT T

i i i i i
δ δ δ δ+ =Σ x x v v  take the familiar form 

ap

0 0

1

[ ]
�

i i

i

δ

=

× =∑ x x 0 , 
0

1

�

i

i

δ

=

=∑ x 0 , ap

0 0

1

( ) 0
�

T

i i

i

δ

=

=∑ x x  (66a) 

ap

0

1

[ ]
�

i i

i

δ

=

× =∑ x v 0 , 
1

�

i

i

δ

=

=∑ v 0 , ap

0

1

( ) 0
�

T

i i

i

δ

=

=∑ x v . (66b) 

Considering only transformation parameters, the partial inner constrains  

1
T

T K T

T T=

= =Σ
z z

E z E z 0  satisfying  

2 2

0 0 0 0 0
( ) minT T T T

T T T T T T T T T T T
s s+ + + + + =Σ θ θ d d θ θ d d� � � �

� , become 

0

1

K

T

T =

=∑θ 0 , 
0

1

K

T

T =

=∑d 0 , 
0

1

0

K

T

T

s

=

=∑ , (67a) 
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1

K

T

T =

=∑θ 0� , 
1

K

T

T =

=∑d 0� , 
1

0

K

T

T

s

=

=∑ � . (67b) 

Again when scale and/or position are provided by the available data the corre-

sponding constraints must be removed. 

 

 

6. Optimal minimal constraints based on kinematic principles 

The above inner and partial constraints based on algebraic considerations are not 

the only possible ones. In fact any set of d  constraints, equal in number to the rank 

deficiency, which provide a unique solution can serve a set of “minimal con-

straints” (Dermanis, 1995, 2000, 2008). The solution ˆ
C

x  from any set of minimal 

constraints T
=C x 0  and its covariance matrix can be easily transformed to the 

solution of the (partial) inner constraints ˆ
+

x  and vice-versa. Note that any solution 

x̂  of the normal equations can be transformed into the solution ˆ ˆ

C
= +x x Ep  satis-

fying the minimal constraints by adding an appropriate term ( ) ( )�∈ =Ep R E A . 

Then ˆ ˆ

T T T

C
= + =C x C x C Ep 0  yielding 1 ˆ( )T T−

= −p C E C x  and  

1ˆ ˆ ˆ( )T T

C

−

= −x x E C E C x .  

The transformation of any solution x̂  to the inner solution ˆ
+

x  is just the special 

case 1ˆ ˆ ˆ( )T T−

+
= −x x E E E E x , with =C E . Therefore the required transformations 

are 

1ˆ ˆ ˆ( )T T

C C

−

+
= −x x E E E E x  (68) 

1ˆ ˆ ˆ( )T T

C

−

+ +
= −x x E C E C x . (69) 

A particular choice, which may resolve a lot of inherent difficulties in ITRF im-

plementation, are the “trivial” minimal constraints where d  coordinates distributed 

over at least 3 points are fixed to their approximate values (i.e. their unknown co-

ordinate corrections are set to zero). By rearranging the order of the unknowns 

1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

=

x

x

x , the trivial constraints have the form 
2
=x 0 . Their main advantage is that 

they can be applied a priori at the level of the observation equations and thus lead 

to uniquely solvable normal equations. Their disadvantage is that numerical insta-

bility may result if the d  coordinates are not properly selected. 

A different approach in seeking minimal constraints for use in ITRF implementa-

tion is the use of kinematic considerations by asking the question what is a best 

choice for attaching a reference system (i.e. a smooth with respect to time set of 

instantaneous reference systems, one for every epoch t ) to a deformable network 
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of points. The answer is easy in loose terms: we want a reference system such that 

the apparent motion of the network stations, expressed through their coordinate and 

apparent velocity functions, ( )
i
tx , ( / )( )

i
d dt tx  are as small as possible. The ques-

tion thus reduces in choosing criteria quantifying the expression “as small as possi-

ble”. Fortunately this problem has been addressed a long time ago by Tisserand in 

his famous “Mécanique Céleste” (Tisserand, 1889, see also Munk & MacDonald, 

1960), though not for a discrete set of points but rather for the continuum of the 

material points of the earth. He proposed a geocentric reference system with direc-

tions of the axes such that the relative angular momentum 
R

h  vanishes, a condition 

which satisfies the minimization of the relative kinetic energy 
R

T : 

1

C

E

dm
M

≡ =∫x x 0 , [ ]
R

E

d

dt
= × =∫

x
h x 0  ⇔  min

T

R

E

d d
T dm

dt dt

⎛ ⎞
= =⎜ ⎟

⎝ ⎠∫
x x

. (70) 

Above dm  is the mass element of the earth, M  its total mass and 
C

x  the coordi-

nates of the center of mass of the earth. Since ( )
C
tx , ( )

R
th  and ( )

R
T t  are functions 

of time, the above relations must hold for every epoch t . The Tisserand condition 

of vanishing angular momentum does not lead to a unique reference system with 

respect to its orientation, but rather to a family of Tisserant axes. All the members 

of this family vary in orientation by an orthogonal rotation matrix which is time 

independent. Any member of the family is thus uniquely defined by its orientation 

at an initial epoch 
0
t  which must be independently chosen. 

We may imitate these conditions by considering our network as a set of mass 

points with equal masses 
i

m m= , which we may take to be equal to one 1
i

m = , 

without loss of generality. In this case the “discrete Tisserant conditions” become 

1
( ) ( )

B i T

i

t t
�

≡ = =∑x x c const., ( ) [ ( ) ] ( )i

R i

i

d
t t t

dt
= × =∑

x
h x 0 , (71) 

where the second one minimizes ( )( ) ( ) ( ) mini i

T
d d

R i dt dt
T t t t= =Σ

x x

. 

The first condition is putting the origin at the network barycenter ( )
B
tx  and the 

second controls the variation of the direction of the axes with time. For the ITRF 

model where 
0 0

( ) ( )
i i i
t t t= + −x x v  and /

i i
d dt =x v , the above conditions take the 

corresponding forms 

0 0

1 1
( ) ( )

B i i T

i i

t t t
� �

≡ + − =∑ ∑x x v c  (72) 

0 0
[ ] ( ) [ ]

R i i i i

i i

t t= × + − × =∑ ∑h x v v v 0  (73) 
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which must be satisfied for any epoch t . Since [ ]
i i
× =v v 0  this leads to only three 

constraints 

0

1

i T

i�
=∑x c , 

i

i

=∑v 0 , 
0

[ ]
i i

i

× =∑ x v 0 . (74) 

Expressed in terms of the corrections ap

0 0 0i i i
δ = −x x x , ap

i i i
δ = −v v v  to approxi-

mate values ap

0i
x , ap

i
v  and neglecting the second order terms [ ]

i i i
δ δ×Σ x v  and 

ap

0[ ]
i i i

δ×Σ v x  the kinematically derived constraints become 

ap

0 0

1

i T

i�
δ = −∑ x c x , ap ap

0 0

1

i

i�
= ∑x x  (75a) 

ap1

i

i�
δ = −∑ v v  ap ap1

i

i�
= ∑v v  (75b) 

ap ap ap ap

0 0[ ] [ ]
i i i i R

i i

δ− × = × ≡∑ ∑x v x v h  (75c) 

where we have used the initial epoch barycenter ap ap1
0 0i i�
= Σx x  and the approximate 

relative angular momentum ap ap ap

0[ ]
R i i i
= ×Σh x v  of the “approximate” network. The 

first constraint defines the origin of the system at 
0
t  by setting the barycenter to 

that of the approximate network ( ap

0( )
B B
t =x x ) and is thus a “translation” constraint 

. The second constraints the network barycenter at any epoch to remain in its initial 

position (
0

( ) ( )
B B
t t=x x ) and is thus a “translation rate” constraint . The third con-

straint deriving from ( )
R
t =h 0  controls the time evolution of the orientation of the 

system and is thus an “orientation rate” constraint.  

In order to compare these results with the partial inner constraints for coordinates 

and velocities obtained in the (simultaneous) stacking problem we shall examine 

the special case where ap

i
=v 0 , a permissible choice since 

i
v  are already small 

quantities, and we also choose ap

0ix  in such a way that ap

0i i
=Σ x 0  and set 

T
=c 0 . In 

such a case the constraints simplify to 

0i

i

δ =∑ x 0 , 
i

i

δ =∑ v 0 , ap

0[ ]
i i

i

δ× =∑ x v 0  (76a) 

which are indeed three of the partial inner constraints. As expected from the very 

nature of the Tisserant condition the constraint which selects the orientation of the 

reference system is missing and must be independently introduced. We may bor-

row the “orientation” constraint from the relevant partial inner constraints 

ap

0 0

1

[ ]
�

i i

i

δ

=

× =∑ x x 0  (76b) 

and thus have a complete set except from the scale problem. 
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To obtain scale and scale rate constraints in a kinematic way we impose the condi-

tion that the overall scale of the network does not vary. The issue is again the 

choice of a quantity quantifying the average scale of the network at every epoch. 

We propose to use the mean quadratic length ( )S t  of the network, defined by 

[ ] [ ]2 21 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

T

Bi i B i B

i i

Q t S t S t t t t t
� �

= = = − −∑ ∑ x x x x  (77) 

where [ ] [ ]( ) ( ) ( ) ( ) ( )
T

Bi i B i B
S t t t t t= − −x x x x  is the distance of each network 

point ( )
i
tx  from the network barycenter 1( ) ( )

B i i�
t t= Σx x  which is uniquely de-

fined for each epoch. Setting 2( ) ( )Q t S t=  we may fix the scale and the scale rate 

by setting 
0

( )S t = constant and 
0

( ) ( )S t S t=  for every t . This is equivalent to set-

ting 
0 0

( )Q t Q≡ = constant and ( ) 0d

dt
Q t = . The scale condition is therefore 

[ ] [ ]2

0 0 0 0 0 0 0

1
( ) ( ) ( ) ( ) ( ) ( )

T

i B i B

i

Q t S t t t t t Q
�

≡ = − − =∑ x x x x  (78) 

Using the mean value 1

0 0i� i
= ∑x x  and 

0 0
( )

i i
t =x x  it follows that 

0 0
( )

B
t =x x  and 

(78) becomes  

0 0 0 0 0 0 0 0 0 0

1 1
( ) ( ) ( )T T T

i i i i

i i

Q t Q
� �

= − − = − =∑ ∑x x x x x x x x .  (79) 

Replacing ap

0 0i i i
δ= +x x x , using ap ap1

0 0i� i
= ∑x x  and noting that 

ap 1
0 0 0i� i

δ= + ∑x x x  we arrive after some algebraic manipulation at 

ap ap ap ap ap ap

0 0 0 0 0 0 0 0

2 1
( ) ( ) ( )T T T

i i i i

i i

Q
� �

δ− = − +∑ ∑x x x x x x x . (80) 

The approximate value of 
0

( )Q t  becomes 

ap ap ap ap ap ap ap ap ap

0 0 0 0 0 0 0 0 0

1 1
( ) ( ) ( ) ( )T T T

i i i i

i i

Q
� �

= − − = −∑ ∑x x x x x x x x . (81) 

and (80) simplifies to 

ap ap ap

0 0 0 0 0

2
( )T

i i

i

Q Q
�

δ− = −∑ x x x . (82) 

Comparing the previous two equations we conclude that an advantageous choice 

for the so far unspecified constant 
0

Q  is to set ap

0Q Q= . This condition is equiva-

lent to setting the mean quadratic scale S  at the initial epoch 
0
t , equal to the quad-
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ratic scale ap
S  of the approximate network 

ap

0

1
( ) ( ) ( )ap ap T ap ap

i B i B

i

S t S
�

= = − −∑ x x x x , 
1ap ap

B i

i�
= ∑x x . (83) 

For this particular choice (82) simplifies to the scale constraint 

0 0 0
( ) 0ap ap T

i i

i

δ− =∑ x x x . (84) 

For the scale rate we have the condition 

[ ] [ ]1
( ) ( ) ( ) ( ) ( )

T

i B i B

i

d d
Q t t t t t

dt � dt
= − − =∑ x x x x  

 [ ] [ ]2
( ) ( ) ( ) ( ) 0

T

i B i B

i

t t t t
�

= − − =∑ x x x x� � . (85) 

The model 
0 0

( ) ( )
i i i
t t t= + −x x v  gives ( )

i i
t =x v� , 

0 0
( ) ( )

B
t t t= + −x x v , 

1( )
B i� i
t = = ∑x v v�  and the above condition becomes 

0 0 0 0
0 [ ( ) ( ) ] ( )T

i i i

i

t t t t= + − − − − − =∑ x v x v v v  

 
0 0 0

( ) ( ) ( ) ( ) ( ) 0T T

i i i i

i i

t t= − − + − − − =∑ ∑x x v v v v v v  (86) 

which must hold for every t . Thus two conditions must be satisfied 

0 0
( ) ( ) 0T

i i

i

− − =∑ x x v v , ( ) ( ) 0T

i i

i

− − =∑ v v v v .  (87) 

These conditions after some algebraic manipulation become 

0 0

T T

i i

i

�=∑x v x v , T T

i i

i

�=∑ v v v v   (88) 

In terms of approximate values and correction they take the form 

ap ap ap ap

0 0 0 0 0( ) ( ) ( ) ( )T T ap T ap ap T ap

i i i i i i

i i i

�δ δ− + − = −∑ ∑ ∑v v x x x v x v x v  (89) 

ap ap ap ap ap ap2 ( ) ( ) ( )T T T

i i i i

i i

�δ− = −∑ ∑v v v v v v v  (90) 

Taking into account that velocities are small quantities, second order quantities in 

velocities and/or corrections can be ignored, in which case the (90) degenerates to 

0 0= , while (89) gives the required “scale rate constraint” 
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0 0 0 0

1 1
( ) ( ) ( )ap ap T ap T ap ap T ap

i i i i

i i� �
δ− = −∑ ∑x x v x v x v  (91) 

to be applied together with the already derived in (89) scale constraint 

0 0 0
( ) 0ap ap T

i i i
δ− =Σ x x x . In the special case that zero approximate values ap

i
=v 0  

are used for the small velocities (89) remains unchanged while (91) simplifies to 

0 0
( )ap ap T

i i i
δ− =Σ x x v 0 . They both differ from corresponding partial inner con-

straints ap

1 0 0( ) 0� T

i i i
δ

=

=Σ x x  (scale) and ap

1 0( ) 0� T

i i i
δ

=

=Σ x v  (scale rate) obtained in 

the (simultaneous) stacking problem. They may coincide under the additional con-

dition that 
0

ap
=x 0 , i.e. when care has been taken to have the origin of approximate 

network at its barycenter. This is easily done by subtracting from any set of ap-

proximate coordinates their corresponding mean values. 

Summarizing our kinematically derived constraints (in comparison with the alge-

braically derived partial inner constraints) are: 

Translation: 

ap

0 0

1

i T

i�
δ = −∑ x c x , ap ap

0 0

1

i

i�
= ∑x x  (versus 

0

1

�

i

i

δ

=

=∑ x 0 ). (92) 

or when the arbitrary constant is 
T
c  set to ap

0T
=c x  

ap

0 0

1

i

i�
δ = −∑ x x , (versus 

0

1

�

i

i

δ

=

=∑ x 0 ). (92′) 

Translation rate: 

ap1

i

i�
δ = −∑ v v , ap ap1

i

i�
= ∑v v  (versus 

1

�

i

i

δ

=

=∑ v 0 ). (93) 

Orientation (borrowed from algebraic): 

ap

0 0

1

[ ]
�

i i

i

δ

=

× =∑ x x 0 .  (94) 

Orientation rate: 

ap ap ap ap

0 0[ ] [ ]
i i R i i

i i

δ− × = ≡ ×∑ ∑x v h x v   (versus ap

0

1

[ ]
�

i i

i

δ

=

× =∑ x v 0 ). (95) 

Scale: 

ap ap ap

0 0 0 0 0

2
( )T

i i

i

Q Q
�

δ− = −∑ x x x .  (96) 
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or when the arbitrary constant 
0

Q  is set to ap ap ap ap ap1
0 0 0 0 0 0

( ) ( )T

i i i�
Q Q= ≡ − −Σ x x x x  

0 0 0
( ) 0ap ap T

i i

i

δ− =∑ x x x , (versus ap

0 0

1

( ) 0
�

T

i i

i

δ

=

=∑ x x ). (96′) 

Scale rate: 

ap ap

0 0 0 0

1 1
( ) ( ) ( )T ap T ap ap T ap

i i i i

i i� �
δ− = −∑ ∑x x v x v x v ,  (versus ap

0

1

( ) 0
�

T

i i

i

δ

=

=∑ x v ). (97) 

Unlike the corresponding algebraic partial inner constraints the kinematic con-

straints do not depend on the approximate values of the coordinates and the veloci-

ties. Note however that in replacing (80) with (82), (92) with (92′) and (96) with 

(96′) we have replaced the arbitrary constants 
0

Q  and 
T
c  with values depending on 

approximate values so that the simplified constraints (92′) and (96′) are no more 

independent of the choice of these values. The two sets of the simplified (by the 

special choices of 
0

Q  and 
T
c ) kinematic minimal constraints and the correspond-

ing algebraic partial inner constraints become identical when the approximate val-

ues satisfy following conditions: 

ap

0 =x 0 , ap

i
=v 0 . (98) 

If the translation and translation rate constraints are to be incorporated together 

with the scale and scale rate ones (i.e. for techniques other than the “geocentric” 

SLR where translation constraints do not apply) we may take advantage of (92) and 

(93) to bring the scale related constraints (96) and (97) to the simpler form 

ap

0 0 0 0

1
( ) ( )ap T ap T

i i

i�
δ = −∑ x x x x , (99) 

0 0
( ) ( )ap T ap T ap

i i i i

i i

δ = −∑ ∑x v x v . (100) 

Unlike the (total) inner or the partial inner constraints, which are homogeneous, the 

kinematic constraints are inhomogeneous with non-zero right-side terms of the 

general form T
=C x d . The solution ˆ

C
x  of the least squares problem with normal 

equations =�x u  under additional inhomogeneous minimal constraints T
=C x d  

and its corresponding covariance cofactor matrix 
ˆ

C
x

Q  are given by (Dermanis, 

1987) 

1ˆ ( ) ( )T −

= + +x � CC u Cd , 1 1

ˆ
( ) ( )

C

T T− −

= + +
x

Q � CC � � CC . (101) 

Note however that if R  is a d d×  regular matrix then T T T
=R C x R d  or T

=C x d� �  

with =C CR�  and T
=d R d� , is an equivalent set of minimal constraints. Replacing 

C  with C�  and d  with d�  in the above formulas and setting T
=S RR  we arrive at 
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1ˆ ( ) ( )T −

= + +x � CSC u CSd , 1 1

ˆ
( ) ( )

C

T T− −

= + +
x

Q � CSC � � CSC , (102) 

where S  is an arbitrary regular symmetric matrix, to be chosen in a way that it 

improves computational efficiency. A set of alternative formulas utilizing the ma-

trix E  of the total inner constraints T
=E x 0  (Koch, 1999) are 

1 1ˆ ( ) ( )T T− −

= + +x � CC u E C E d , 1 1

ˆ
( ) ( )

C

T T T T− −

= + −
x

Q � CC E E CC E E .  (103) 

Following the previous argument these can also be generalized to 

1 1ˆ ( ) ( )T T− −

= + +x � CSC u E C E d , 1 1

ˆ
( ) ( )

C

T T T T− −

= + −
x

Q � CSC E E CSC E E . (104) 

 

 

Conclusions 

The problem of choosing an optimal reference system for the International Terres-

trial Reference Frame (ITRF) has been studied for two alternative approaches: (a) 

the one-step approach of simultaneous stacking (removal of the reference system at 

each data epoch and implementation of a linear in time coordinate model) for all 

techniques and (b) the two-step approach where stacking is first applied to each 

technique separately followed by a combination step where the obtained estimates 

of station initial coordinates and velocities per technique are combined to obtain 

their final ITRF estimates. Two different in principle approaches have been fol-

lowed for the definition of the optimal ITRF reference system, the classical alge-

braic one of inner constraints and a new approach for the derivation of optimal 

minimal constraints based on kinematic principles where the apparent variation of 

coordinates with time is minimized. To achieve these goals to compromises had to 

be made. The permissible reference system changes leading to the optimal one 

have been restricted (a) in transformations close to the identity (very small changes 

of the reference system, where second order terms in the transformation parameters 

can be neglected) and (b) in transformations which preserve the linear-in-time form 

of the ITRF model. The second restriction leads to transformation parameters 

which are linear functions of time and lead to a sub-optimal solution to the choice 

of reference system problem. Absolute optimality requires transformation parame-

ters which are arbitrary functions of time which nevertheless lead to ITRF models 

which are no more linear functions of time as imposed a priori. 
 
The main difference between algebraic and kinematic constraints is that they are 

based on different optimality principles. The algebraic ones minimize the sum of 

squares of the unknowns, which are corrections to the approximate values of all or 

a selected subset of the original unknowns (station initial coordinates and velocities 

and nuisance transformation parameters from the ITRF reference system to that of 

the available observations). The kinematic constraints preserve the barycenter of 
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the network, its mean quadratic scale and minimize its relative (apparent) kinetic 

energy by causing its relative (apparent) angular momentum to vanish (discrete 

Tisserand condition). Relative kinetic energy and relative angular momentum refer 

to the ITRF network viewed as a set of material points with equal mass. 
 
As a consequence of their very definition the algebraic constraints depend on the 

more-or-less arbitrary approximate values of the unknown parameters. On the con-

trary the kinematic constraints are independent of the choice of approximate values 

and are thus uniquely defined. 
 
Despite the above differences the kinematic minimal constraints coincide with a 

particular set of the algebraic partial inner constraints, the one referring to only the 

initial values and velocities of the ITRF stations, under mild conditions on the 

choice of approximate values. Indeed such a coincidence results by choosing ap-

proximate values of initial coordinates which have zero mean and zero approxi-

mate values for velocities. 
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