
Towards a conventional transformation model for vertical reference frames 319 

 

Towards a conventional transformation model  
for vertical reference frames 
 

 

C. Kotsakis 

Department of Geodesy and Surveying, Faculty of Rural and Surveying Engineering,  

Aristotle University of Thessaloniki 

 

 

Abstract: A conventional transformation between different realizations of a vertical refer-

ence system is an important tool for geodetic studies related to precise vertical positioning 

and physical height determination. Its main role is the evaluation of the consistency for co-

located vertical reference frames (VRFs) on the basis of some fundamental ‘vertical datum 

perturbation’ parameters. Our scope herein is to discuss a number of key issues related to 

the formulation of such a VRF transformation model and to present a few examples from its 

practical implementation in the comparison of various existing vertical frames over Europe. 

 

 

1. Introduction 

The comparison of terrestrial reference frames (TRFs) that are established by dif-

ferent observation techniques and/or optimal estimation strategies is a common 

task which is often implemented in geodetic studies, constituting either a research 

goal in itself or an auxiliary step for other applications that depend on precise geo-

metric positioning. Such a comparison is typically based on the linearized similar-

ity transformation (e.g. Leick and van Gelder 1975), a useful tool that supports the 

evaluation of Earth-fixed TRFs on the basis of some datum-perturbation parame-

ters which are inherently associated with the establishment of geodetic terrestrial 

reference systems (Altamimi et al. 2007). Following a least-squares fitting of this 

transformation model over a network of common points, a set of estimated parame-

ters can be obtained that quantify the origin, orientation and scale consistency of 

the underlying TRFs in terms of their relative translation, rotation and scale varia-

tion. The aforementioned scheme provides a geodetically meaningful framework 

for comparing, transforming and combining Euclidean spatial reference frames, 

and also for assisting their quality assessment through a suitable de-trending of 

their systematic discrepancies in order to identify any localized distortions in their 

respective coordinate sets. 
 
To a large extent, a similar situation (as the one described above) occurs also in 

geodetic applications related to the establishment of vertical reference systems for 

physical height determination. Several realizations of a vertical reference system 

(VRS) may be available over a regional or even continental network, originating 
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from separate leveling campaigns, alternative data combination schemes and dif-

ferent adjustment strategies. As an example, let us consider a set of national level-

ing benchmarks, within some EU country, that is part of the United European Lev-

eling Network (UELN). At least three different vertical reference frames (VRFs) 

co-exist in this regional leveling network, whose physical heights are respectively 

obtained from the EVRF00 and EVRF07 continental solutions (Ihde and Augath 

2001, Sacher et al. 2008), and by the (usually older) national adjustment of the 

primary height network in the underlying country. If, in addition, GPS data are 

available at the particular UELN stations, then more VRFs could emerge through 

the synergetic use of gravimetric geoid/quasi-geoid models that enable the conver-

sion of observed geometric heights to physical heights.  
 
An objective comparison among different VRFs needs to be rigorously based on a 

conventional transformation model that quantifies the inconsistencies in the reali-

zation of a vertical reference system from co-located physical height datasets. The 

adopted model must resemble the role of the linearized similarity transformation 

that is used in TRF studies, while its associated parameters should reflect the verti-

cal datum disturbances implied by the corresponding VRFs. Eventually, the utmost 

role of the underlying height transformation is to be used for generating a com-

bined optimal VRF solution from individual realizations that are jointly merged 

into a unified vertical frame by postulating appropriate minimum constraints to the 

datum-related parameters of the height transformation model. 
 
The aim of this paper is to discuss some general aspects about the formulation of a 

conventional height transformation model for vertical frame evaluation studies, and 

to present a few examples from its practical use in the comparison of various exist-

ing VRFs over Europe. 

 

 

2. Height transformation schemes in practice 

Various transformation algorithms for physical heights exist in geodetic practice, 

mostly in support of gravity field modeling and vertical positioning with heteroge-

neous data. Typical examples include the reduction of physical heights to a con-

ventional permanent tide system and/or to a reference time epoch due to temporal 

variations caused by various geodynamical effects (Mäkinen and Ihde 2009, Jekeli 

2000), the conversion from normal to orthometric heights (and vice versa), and the 

determination of apparent height variations due to a known geopotential offset in 

the zero-height level of the underlying vertical datum. 
 
Moreover, a number of modeling schemes have appeared in the geodetic literature 

for the optimal fitting of co-located height datasets and the inference of hidden 

systematic disturbances between them. The treatment of these problems relies on 

the inverse implementation of a height transformation model that is adopted on the 
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basis of (mostly) empirical criteria. A well-known example is the combined ad-

justment of ellipsoidal, geoid/quasi-geoid, and leveled heights over a terrestrial 

control network, which represents a common procedure that has been applied under 

different objectives in numerous geodetic studies. In the context of our discussion 

herein, such an adjustment task shall be perceived in terms of a generalized trans-

formation scheme for physical heights: 

T
 

i i i i i
H H s v′ − = + +a x  (1) 

where 
i

H  and 
i

H ′  denote the orthometric (or normal) heights obtained from level-

ling measurements and GPS/geoid (or quasi-geoid) data, respectively. Their sys-

tematic discrepancies are modelled by a low-order parametric model and (option-

ally) a spatially correlated zero-mean signal, whereas 
i
v  contains the remaining 

random errors in the height data. The estimated values of the unknown parameters 

x and the predicted values of the stochastic signals 
i
s  are obtained from a least-

squares (LS) inversion of Eq. (1) over a number of control stations, using some a-

priori information for the data noise level and the signal covariance function (Kot-

sakis and Sideris 1999). 
 
Several choices have been used in practice for the parametric component T

i
a x  in 

Eq. (1), none of which has ever assumed the role of a geodetically meaningful 

evaluator of the systematic differences between the underlying VRFs; that is, be-

tween the levelling-based frame {
i

H } and the GPS/geoid-based frame {
i

H ′ }. In 

most cases, the suitability of the adopted model is judged by the reduction of the 

sample variance of the adjusted height errors {
i
v } within the test network, and not 

by the physical or geometrical meaning (if any) of its parameters. In fact, the esti-

mated values of x have never been of any actual importance in geodetic studies, 

other than offering a more or less arbitrary parametric description for the spatial 

trend of the height differences 
i i

H H′ − . 
 
It is worth noting that the use of the well-known 4-parameter model:  

T

1 2 3
  cos cos cos sin sin

i o i i i i i
x x x xϕ λ ϕ λ ϕ= + + +a x  (2) 

may be viewed, to some extent, as an attempt to infer ‘datum perturbations’ be-

tween the physical height frames {
i

H } and {
i

H ′ }. Such a viewpoint relies on the 

equivalent form of Eq. (1) 

T
 

i i i i i
� � s v′ − = + +a x  (3) 

where 
i

�  and 
i

� ′  denote the corresponding geoid or quasi-geoid undulations ob-

tained from a gravimetric model and GPS/levelling data, respectively. If the 4-

parameter model is used into Eq. (1), then the systematic part of the differences 

i i
H H′ −  is essentially described, in view of Eq. (3), through a 3-D spatial shift (x1, 
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x2, x3) and a scale change (xo) between the associated zero-height reference sur-

faces of the physical heights. This fictitious perspective may also be evoked for the 

comparison of vertical frames that are obtained exclusively from terrestrial level-

ling, without the external aid of GPS heights and gravimetric geoids/quasi-geoids. 
 
The aforementioned 4-parameter model was often used in older studies as a basic 

tool for estimating geodetic datum differences from heterogeneous height data; 

especially for assessing the geocentricity of TRFs based on Doppler-derived and 

gravimetrically-derived geoid undulations and also for determining the Earth’s 

optimal equatorial radius from geometric and physical heights (e.g. Schaab and 

Groten 1979, Grappo 1980, Soler and van Gelder 1987). These tasks require a 

global height data distribution otherwise the 3-D translation parameters (x1, x2, x3) 

become highly correlated with the zero ‘scaling’ term (xo), and their adjusted val-

ues may be entirely unrealistic from a physical point of view. For that reason, the 

LS inversion of Eq. (1) will not always produce a geodetically meaningful solution 

for the individual components of the 4-parameter model - not even for the esti-

mated height bias xo; for some numerical examples, see Kotsakis and Katsambalos 

(2010). Moreover, the conceptual drawback of this model for VRF evaluation stud-

ies is that it essentially compares the zero-height surfaces between two vertical 

frames with respect to a (fictitious) geocentric reference system, without consider-

ing the most important element in vertical datum realization: a geopotential refer-

ence value Wo and its possible variation between alternative VRFs. 
 
The estimation of the (usually unknown) zero-height level Wo that is inherently 

linked to any vertical frame can be carried out through various strategies based on 

‘external’ geopotential information and space geodetic measurements at a number 

of leveling benchmarks (e.g. Burša et al. 2001; Ardalan et al. 2002). In this way, 

any VRF is comparable to another, not necessarily co-located, VRF' in terms of the 

estimated geopotential difference (δWo) of their zero-height levels. However, such 

a value is affected by the errors in the adopted geopotential model and thus it may 

give a misleading assessment of the zero-height consistency between the tested 

VRFs. 
 
Furthermore, a comprehensive comparison of vertical frames should take into ac-

count the spatial scale variation due to systematic differences in their associated 

measurement techniques and/or modeling assumptions. In fact, one should not 

forget that the fundamental height constraint h−H−�=0, or its equivalent differen-

tial form Δh−ΔH−Δ�=0, requires not only the ‘origin consistency’ among the het-

erogeneous height types, but also their reciprocal vertical scale uniformity. 

 

 

3. Formulation of a conventional VRF transformation model 

An objective assessment of the consistency between VRFs needs to be based on a 
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conventional model describing their systematic discrepancies over a common 

group of control stations. The parameters x of such a model: 

 ( )
i i i

H H f v′ − = +x  (4) 

should quantify the (actual and/or apparent) vertical datum perturbations induced 

by the physical height datasets {
i

H } and {
i

H ′ }, while the remaining residuals, 

after a LS adjustment of Eq. (4), indicate the relative accuracy level of the corre-

sponding vertical frames. Further analysis of the adjusted height differences is 

useful for identifying systematic distortions and other spatially correlated errors 

within the tested VRFs, which cannot be absorbed by the transformation parame-

ters x. 
 
Note that a VRF is a realization of a 1-D terrestrial coordinate system with respect 

to an equipotential surface of Earth’s gravity field. The latter provides a conven-

tional zero-height level relative to which vertical positions (geopotential numbers 

and their equivalent physical heights) can be obtained by various geodetic tech-

niques and terrain modeling hypotheses. Hence, the key role of Eq. (4) is to ap-

praise the variation of the reference equipotential surface and the vertical metric 

scale, which both signify the fundamental datum constituents for vertical position-

ing within each of the tested frames. 
 
Two essential parameters must be incorporated in f (x), namely a VRF translation 

parameter in the form of a geopotential disturbance δWo, and a VRF scale change 

parameter in the form of a unitless factor δs reflecting the scale difference between 

the corresponding height frames. In case of dynamic VRFs, the time derivatives of 

the above parameters need also to be considered when transforming physical 

heights between different epochs and/or vertical velocities from a VRF to another 

VRF'. In contrast to the Helmert-type transformation scheme that is used in geo-

metric Cartesian TRFs, there are not rotational terms within the VRF transforma-

tion model f (x) since the frame orientation aspect is not a geodetically meaningful 

characteristic of vertical reference systems. 

 

3.1 General remarks 

The notion of the ‘scale’ in a vertical reference system is often linked to the geopo-

tential value Wo that is adopted for defining absolute vertical coordinates (geopo-

tential numbers) and their equivalent physical heights on the Earth’s surface. Spe-

cifically, the VRS scale is explicitly related to an equipotential surface realized by 

the combination of a mean sea surface topography model and a global gravity field 

model, in accordance with the classic Gauss-Listing definition of the geoid (Ihde 

2007). This is mainly a simplified approach to quantify the average size of the 

reference surface used for vertical positioning, since the ratio of the geocentric 

gravitational constant to the adopted reference geopotential level: 
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o

GM
R

W
=  (5) 

yields the mean radius of the geoid, which itself defines a physical metric for the 

geocentric spatial position of terrestrial points with zero heights! Obviously, any 

change of Wo induces an apparent offset to the terrestrial physical heights, which 

will be perceived as an indirect ‘scaling effect’ due to the changed spatial dimen-

sion of their zero-height reference surface (with respect to a fixed geopotential 

model). 
 
The previous viewpoint aims at the standardization of the Earth’s global scale in 

terms of the physical parameters GM and Wo, and it is not related to the notion of a 

scale variation between different realizations of a VRS. In fact, a change of Wo is 

related to a transformation from a conventional height ‘origin’ to another one, 

whereas the scope of a VRF scale change is to account for the systematic discrep-

ancy of the vertical metric scale realized by alternative heighting techniques and 

datasets when determining physical height differences. Both types of VRF pertur-

bation (origin and scale) are feasible and they may co-exist in the joint analysis of 

vertical frames. 

 

 

3.2 The effect of δWo 

Changing the zero-height level of a VRF means that a new vertical frame with a 

different equipotential surface will be used as a reference for physical heights. 

Such a transformation is described through a single parameter (δWo) reflecting the 

geopotential disturbance of the zero-height equipotential surface with respect to a 

conventional representation W(·) of the Earth’s gravity field. The effect on the 

VRF geopotential numbers is a simple offset equal to δWo, while for the VRF or-

thometric or normal heights it takes the form of a nonlinear and spatially inhomo-

geneous variation according to the following power series expansions: 

2

3
  ...

2

o o

i i

i
i

W g W
H H

g H g

δ δ∂
′ − = − +

∂
 (6) 

for the case of orthometric heights, or 

2

3
  ...

2

o o

i i

i
i

W W
H H

H

δ γ δ

γ γ

∂
′ − = − +

∂
 (7) 

for the case of normal heights. The terms 
i

g  and ∂g/∂H denote the actual gravity 

and its vertical gradient on the geoid, or more precisely on the equipotential surface 
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associated with the initial orthometric height. Also, 
i

γ  and ∂γ/∂H denote the nor-

mal gravity and its vertical gradient on the reference ellipsoid which is associated 

with the initial normal height. 
 
For practical purposes, both Eqs. (6) and (7) can be replaced by the simplified lin-

earized formula: 

o

i i

i

W
H H

δ

γ
′ − =  (8) 

since their second, and higher, order terms have a negligible contribution (< 1 mm) 

for reasonably low values of δWo (up to 1-2 gpu or equivalently up to 10-20 m2
 s-2). 

Moreover, the geoidal gravity 
i

g  in Eq. (6) may be safely substituted by the nor-

mal gravity 
i

γ  on the reference ellipsoid, causing an approximation error into the 

transformed orthometric height that is below the mm level, even for gravity anom-

aly values up to 500 mGal. 

 

3.3 The effect of δs 

In contrast to geometric Cartesian TRFs, the assessment of a systematic scale dif-

ference between VRFs is not a straightforward issue. The effect of a scale change 

on the physical heights depends on the way we (choose to) handle the Earth’s grav-

ity field and its equipotential surfaces under a uniform spatial re-scaling. The un-

derlying problem is similar to the TRF similarity transformation of GPS heights 

with respect to a reference ellipsoid, where the latter may or may not ‘follow’ the 

spatial scale variation that is imposed by the TRF scale change (Soler and van 

Gelder 1987, Kotsakis 2008). 
 
Starting from the fundamental differential formula (Heiskanen and Moritz 1967, p. 

50) 

 dW g dH= −  (9) 

where g denotes the magnitude of the gravity vector, the following relationship can 

be obtained: 

yx z
gg g gradW

dH dx dy dz
g g g g

⋅

= + + = −

dr
 (10) 

which gives the vertical (physical height) metric in terms of a weighted combina-

tion of the Euclidean metric components with respect to an Earth-fixed spatial 

coordinate system. The associated weights are the normalized geopotential gradi-

ents and they represent the influence of the Earth’s gravity field on the physical 

height scale. 
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Assuming that the geopotential signal and its gradient vector remain invariant un-

der a uniform scale change dr' = (1+δs) dr, then the resulting effect on the physical 

heights over the Earth’s surface is expressed through a simple linear re-scaling: 

(1 )
i i

H s Hδ′ = +  (11) 

The above formula provides the basis for assessing the scale difference between 

VRFs relative to a fixed reference surface; note that zero-height points are pre-

served by the scaling transformation of Eq. (11). In essence, the differential factor 

δs absorbs the (linear part of) topographically-correlated discrepancies between 

{
i

H } and {
i

H ′ }, which cause an apparent scale disturbance between their corre-

sponding VRFs. 

 

 

4. Least-squares adjustment of the VRF transformation model 

Based on the discussion given in Sect. 3, a conventional VRF transformation model 

can be formulated through the simple linearized expression: 

 

o

i i i

i

W
H H sH

δ
δ

γ
′ − = +  (12) 

where the meaning of each term has already been explained in previous para-

graphs. Essentially, the above model represents the 1D-equivalent of the similarity 

transformation for vertical positions (physical heights) from a VRF to another 

VRF'. 
 
The LS adjustment of Eq. (12) over a network of m control points leads to the fol-

lowing system of normal equations (NEQs): 

T T T

T T T

ˆ ( )
 

ˆ ( )

o
W

s

δ

δ

=

⎡ ⎤ ⎡ ⎤⎡ ⎤ ′ −
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ′ −⎣ ⎦⎣ ⎦ ⎣ ⎦

q Pq q Pd q P d d

d Pq d Pd d P d d

 (13) 

where the vectors d and d' contain the known physical heights (orthometric or 

normal) with respect to different vertical frames, i.e. 

[ ]
 T

1 m
H H=d �       [ ]

 T

1 m
H H′ ′′ =d �  

while P is a weight matrix for their differences, and the auxiliary vector q is de-

fined as: q(i) = 1/γi.  
The previous NEQs system is always invertible provided that q and d are not co-

linear with each other. Given that the elements of the auxiliary vector q retain an 

almost constant value (i.e. their relative deviation does not exceed 10-4 even in 
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large-scale continental networks), the inversion of Eq. (13) is practically guaran-

teed as long as the m control points do not have the same height level! 
 
The correlation coefficient between the VRF transformation parameters is always 

negative and it is given by the general expression: 

 

    

T

ˆ ˆ T 1/2 T 1/2,

 [ ]

 [ ]( ) ( )o
W s

mean

rms
δ δ

ρ = − −

q Pd d

dd Pd q Pq
�  (14) 

A useful algebraic relationship for the optimal estimates obtained from the inver-

sion of Eq. (13), as a function of their correlation coefficient, is: 

 

T T 1/2

ˆ ˆT T 1/2,

( ) ( )
ˆ ˆ    

( )o

o W s
W s

δ δ
δ ρ δ

′ −
= +

q P d d d Pd

q Pq q Pq
 (15) 

The separability of the VRF transformation parameters depends strongly on the 

vertical network configuration. In the context of the joint estimation of δWo and δs, 

an optimal vertical network geometry is not related to a homogeneous coverage 

over the Earth’s surface, but to the height variability among its control stations. 

Specifically, the dispersion of the data vector d must be sufficiently large (with 

respect to the average height of the control stations) in order for the correlation 

coefficient in Eq. (14) to retain a reasonably low value. 
 
Let us give a few examples from the LS inversion of the transformation model in 

Eq. (12) for a number of VRFs in Europe. The first example employs the EVRF00 

and EVRF07 normal heights at the 13 UELN fiducial stations that were used for 

the primary definition of the zero-height level in the official EVRF07 solution 

(Sacher et al. 2008). Although the zero-height levels of these two frames were a-

priori aligned at the particular stations through a single constraint that was imple-

mented within the EVRF07 adjustment (see Sacher et al. 2008), our results in Ta-

ble 1 show a small (mm-level) offset between their corresponding reference sur-

faces. This is caused by the inherent correlation between the estimated parameters 
ˆ

o
Wδ  and ŝδ  (ρ = –0.7 in this case), representing an unavoidable ‘leakage’ effect 

that occurs in most adjustment problems with coordinate transformation models.  

 

Table 1. Transformation parameters between EVRF00 and EVRF07 (based on the normal 

heights at 13 UELN stations over Europe). The initial weight matrix P was set 

equal to a unit matrix, while the a-posteriori variance factor of unit weight was 

estimated at σo = 9 mm. 

d d' ˆ

o
Wδ  (gpu) ŝδ  (ppm) 

EVRF00 EVRF07 0.002 ± 0.004 –25.5 ± 27.7 
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Nevertheless, the values of the transformation parameters between EVRF00 and 

EVRF07 seem to be statistically insignificant, within the limits of their statistical 

precision, over the particular 13-station UELN continental network. 
 
The second example uses several VRFs that are realized over a network of 20 

Swiss leveling benchmarks which are part of the EUVN-DA network (Marti 2010). 

The tested frames were compared on the basis of Eq. (12) using normal heights 

from: the EVRF00 and EVRF07 continental solutions, the combination of GPS 

heights with the European gravimetric geoid model EGG08, the official Swiss 

national height system LN02, and the LHN95 rigorous adjustment of the Swiss 

national height network. The estimated transformation parameters are given in 

Table 2, whereas the standard deviation of the height residuals (before and after the 

VRF transformation) are listed in Table 3. 

 

Table 2. Transformation parameters between various VRFs in Switzerland (based on 20 

EUVN-DA Swiss stations). 

d d' ˆ

o
Wδ  (gpu) ŝδ  (ppm) 

EVRF00 EVRF07  0.025 ± 0.001   2.9 ± 0.8 

GPS/EGG08 EVRF07  0.044 ± 0.012  –76.6 ± 10.7 

LN02 EVRF07 –0.251 ± 0.030    35.7 ± 26.8 

LHN95 EVRF07 –0.060 ± 0.026 –220.7 ± 22.9 

 

Some notable highlights of the previous results are: the considerable scale differ-

ence between LHN95 and EVRF07 and the significant origin discrepancy between 

LN02 and EVRF07, the superiority of the GPS/EGG08 height frame (compared to 

the Swiss national VRFs) regarding its agreement with the official EVRF07 

heights, and finally the sub-cm consistency between EVRF00 and EVRF07 at the 

particular 20 EUVN-DA Swiss stations, even before the implementation of the 

height transformation model of Eq. (12). 

 

Table 3. Standard deviation (in cm) of the height residuals as obtained before and after 

the adjustment of Eq. (12) at 20 EUVN-DA Swiss stations. 

d d' σ (before) σ (after) 

EVRF00 EVRF07 0.3 0.2 

GPS/EGG08 EVRF07 5.2 2.6 

LN02 EVRF07 6.9 6.6 

LHN95 EVRF07 14.0 5.6 
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5. Epilogue 

A preparatory discussion on the use of a conventional transformation model for 

evaluating and comparing VRFs has been presented in this paper. Our analysis has 

been restricted only to a static (time-independent) height transformation setting, yet 

its generalization for cases of dynamic vertical frames is also necessary, especially 

in view of the following key tasks: (i) the assessment of systematic discrepancies in 

vertical velocity models obtained by different geodetic techniques and modeling 

assumptions, and (ii) the optimal combination of individual time-dependent VRF 

realizations over a global or continental control network. 
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