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Abstract: In this paper a method for solving the problem of height datum unification is 
presented. This is essentially a problem for the determination of the potential differences 
among different height datums. The local height datums vary mainly due to different ways 
of their definition, methods of realizations and the fact that they are based on local data. 
The main approaches for determining potential differences are outlined and compared, 
taking into account the recent developments of the theory of geodetic boundary value prob-
lems (BVPs). This allowed us to select the fixed mixed BVP as the most suitable type for 
the estimation of the quasigeoid which has the advantage that is independent of any local 
height datums and it can be regarded as a global height datum. The basic method of datum 
unification relies on the comparison of the potential differences of each local height datum 
with the so-determined global height datum (i.e. the quasigeoid). 
 
 
1. Introduction 

One of the present day challenges of geodesy is the unification of all local and 
regional height datums into one consistent height datum. The practical problem is 
to realize a global reference surface supporting geometric (e.g. from GPS) and 
physical heights (e.g. from levelling, sea level observations) and to integrate the 
existing local height systems into one global system that is compatible with inter-
national standards and enables cost-saving implementation of modern (satellite, 
terrestrial, airborne and shipborne) geodetic techniques with accuracies ranging 
from 10-8 to 10-9 globally.  
For a long time, Mean Sea Level (MSL) has been regarded as the reference surface 
for heights. MSL expresses a state of gravitational equilibrium and is generally 
determined as the average height of the ocean’s surface measured by long-term sea 
level observations in one or several tide gauges (Zhang et al., 2009). However 
MSL is not an equipotential surface of the Earth’s gravitational field, because in 
reality, due to currents, air pressure, temperature and salinity variations, etc., this 
does not occur, not even as a long term average. Therefore, different height datums 
refer to different equipotential surfaces, and consequently there exist various off-
sets between different local height datums with respect to the chosen ‘reference 
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surface’. In addition, the MSL and the geoid are not the same. The geoid describes 
the irregular shape of the earth and is the true zero surface for measuring eleva-
tions, since it is an equipotential surface of the Earth’s gravity field that approxi-
mates the global MSL in the least squares sense. In a state of rest or absence of 
external non-gravitational forces, MSL would coincide with this geoid surface. The 
deviation between MSL and the geoid can vary globally in as much as ±2 m and is 
often referred to as stationary Sea Surface Topography or SST for short (Ardalan 
and Safari, 2005). In some oceanic regions, like the equatorial areas, the assump-
tions about a stationary SST do not hold, and consequently the marine geoid in 
these areas has to computed separately (in patches) for different zones that cannot 
be directly connected. Therefore, what is defined as ‘zero elevation’ in one region 
is not the same zero elevation defined in another region, which is why locally de-
fined height datums differ from each other and need to be inter-connected.  
Ideally, a global height datum conforming to the modern accuracy standards is 
required in order to serve many of the tasks of geodesy today, such as: to study 
SST at different tide gauges, construct regional or global geospatial information 
systems, monitor global climate changes by measuring long-term MSL variations, 
reduction in polar ice-cap volumes, post-glacial rebound and land subsidence stud-
ies, compute reliable estimates of ocean currents, etc. All of these applications 
require a global view of the Earth with measurements not only on land, but over the 
oceans as well (Fotopoulos, 2003).  
In this paper, we approach this height datum unification problem through the de-
termination of potential difference between two (or more) local height datums 
based on the solution of the linear fixed mixed (altimetry-gravimetry) boundary 
value problem. This allows obtaining the quasigeoid (instead of the geoid) which, 
although is not a level surface (in continental areas), and therefore, has no physical 
meaning, is a computationally convenient reference surface that is independent of 
any local height datums and can be regarded as a global height datum. 
 
 
2. Approaches for determining potential differences 

In general, there are three main approaches that can be followed in order to deter-
mine potential differences: (i) the classical (ii) the oceanographic and (iii) the Geo-
detic Boundary Value Problem (GBVP) approach.  
In the classical approach, potential differences can be determined as the result of 
spirit levelling combined with gravity measurements. This involves a process that 
is repeated in a leap-frog fashion to produce elevation differences between estab-
lished bench marks that comprise the vertical control network in the area of inter-
est. When considering an arbitrary point Po at sea level and another point P con-
nected to Po, the potential difference between P and Po can be determined as 
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C = C(P, Po) = W(Po) – W(P) = WO – WP ∫∫ −=−=

P

Po

P

Po

dngdW   (1) 

where C is known as the geopotential number of P that denotes the difference be-
tween the Earth’s actual potential WO=W(Po) at the geoid and the actual potential 
WP=W(P) of the surface on which the point P resides; g and dn denote respectively 
the average value of actual gravity and the elevation increment between successive 
benchmarks. Being a difference between geopotential values, the geopotential 
number C is independent of the levelling route along which the levelling is run in 
order to relate the height of point P to the sea level (at point Po). Geopotential 
numbers make possible to estimate the orthometric H and the normal H* height of 
a point, in the adopted local height datum, by using the following simple relations 

gCH /=   (2) 

γ/* CH =  (3) 

where g  is the mean gravity along the actual plumb line from point Po on the 
geoid up to point P on the surface of the Earth and γ  is the mean value of the 
normal gravity from the surface of the Earth down to the quasigeoid along the 
normal plumb line. True orthometric heights are never achieved since their compu-
tation requires knowledge of or assumptions about the behavior of g inside the 
Earth (e.g. due to variations of the crustal density) where the mass distribution is 
unknown, and because it is also impossible to measure actual gravity along the 
plumb line, inside the Earth’s topography. Normal heights on the other hand, they 
do not have these problems. Normal gravity can be calculated at any point without 
any hypotheses, as it is a simple analytical function of position depending only on 
the defining parameters of the reference level ellipsoid, which generates the normal 
gravity field. Hence, the normal height of a point P on the physical surface of the 
Earth can be interpreted as the height above the quasigeoid or alternatively above 
the telluroid, as it will be explained later on. The quasigeoid is identical with the 
geoid over the oceans and is very close to the geoid anywhere else. Its main advan-
tage is that it can be computed rigorously without the necessity to make any hy-
potheses about the density distribution of the topographic masses, which accompa-
nies the task of geoid determination (Heiskanen and Moritz, 1967). Once the qua-
sigeoid is determined, it can be transformed into a geoid (if it is so desired) by 
introducing the desired hypothesis about the density of the topographic masses.   
In spite of their obvious shortcomings (e.g. being time consuming, costly, laborious 
and suffering from problems of accumulation of the errors), this type of definition 
of height datums might be sufficient for applications of local or regional scale but 
would cause significant problems, as soon as connection of the height networks of 
different countries or continents separated by very wide areas and/or by oceans and 
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unification of height datums in global scale are concerned (Colombo, 1980; Rum-
mel and Teunissen, 1988; and Xu and Rummel, 1991).  
In the oceanographic approach, geostrophic and steric sea level variation proce-
dures are applied to the problem of determining the potential difference between 
two (or more) points across widely separated oceanic areas. These potential differ-
ences on the sea surface can be estimated from analyses of historical ocean subsur-
face temperature and salinity observations and/or inferred, for instance, from satel-
lite altimetry merged mean sea anomalies (since 1993) and GRACE gravimetry 
(more recently) or from tide gauge data (over the past decades). This type of height 
datum unification is based on the presumption that the ocean acts as a huge level 
that can connect the zero points of the height datums realized by the reference tide 
gauges. However, the accuracy of ocean levelling is relatively low, mainly because 
the phenomena involved are very complex and difficult to model, but also due to 
many practical drawbacks, such as: the sparseness of ocean data (salinity, tempera-
ture, velocities of ocean currents), the time variability of the ocean, the inadequate 
knowledge of the ocean mass changes (e.g. due to change in atmospheric water, 
land hydrology and land ice mass), the non-validity of the geostrophic assumption 
about ocean currents, the poor reliability of satellite radar altimetry close to the 
coast, and the lack of precise tide models (Rummel and Ilk, 2009; Zhang et al., 
2009; and Ardalan and Safari, 2005).  
Under the framework of GBVPs, the potential difference between two (or more) 
areas can also be applied for height datum unification by introducing the local 
height datum discrepancies directly into the GBVPs (e.g., Rummel and Teunissen, 
1988; Lehmann, 2000; and Ardalan et al., 2010). Using gravity measurements and 
levelling, only potential differences can be obtained, whereas the absolute value of 
the geopotential cannot be obtained at any point with acceptable accuracy. Conse-
quently, the boundary values of the geopotential must be assumed to be known 
except for one additive constant that must be determined by imposing a suitable 
additional constraint (Sacerdote and Sansò, 2003). However, these methods require 
the use of local heights, e.g. in order to calculate the gravity anomalies. Further-
more, they can be affected by inconsistencies in the gravity data coming from dif-
ferent sources, which may have different datums or processed by inconsistent 
methods. In these cases, such uncertainties can be misinterpreted as height datum 
discrepancies.  
This GBVP approach is the most recent one, and since it represents the starting 
point of our present work, it is discussed briefly in the following sections of the 
paper, in an effort to highlight, what is the most suitable GBVP formulation for 
determining the sought potential differences among various height datums (i.e. 
local vis-à-vis global, local indirectly to other local), by estimating the height da-
tum discrepancies as follow up step after the BVP solution. 
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3. Formulations of geodetic boundary value problems 

GBVPs represent a well-established basis of the analysis of terrestrial and satellite-
based geodetic measurements for inference of the gravity field of the Earth as well 
as the quasigeoid or the geoid. The treatment of boundary value problems (BVPs) 
has always been used in geodesy as a suitable framework for determining the 
Earth’s disturbing potential T (the difference between W and U, the actual and the 
normal potential respectively, where both quantities are referred to the same point). 
The classical theory of the GBVPs originated initially from the works of G.G. 
Stokes (ca. 1849) and M.S. Molodensky (ca. 1945), and was followed, in recent 
years, by more complicated formulations attempting to approach the real world 
conditions more realistically (i.e. be closer to the measurements), while also deal-
ing with the issues of well-posedness (i.e. existence, uniqueness, and continuous 
dependence of the solution on boundary data). Depending on the type of data, sev-
eral BVPs can be defined. However, after linearization around a suitable approxi-
mate solution all problems are special cases of a problem for the Laplace equation 
in the Earth’s exterior. The boundary conditions associated with the GBVPs, in 
general, has the form of the so-called fundamental equation of physical geodesy 
(Heiskanen and Moritz, 1967) 

,ΔgT
h

γ

γ

1

h

T
−=

∂

∂
−

∂

∂
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where T is the disturbing potential, γ is the normal gravity, h is the geometric (el-
lipsoidal) height, ∂h denotes the partial derivative with respect to the direction of 
the normal plumb line and Δg denotes the gravity anomalies defined on the bound-
ary surface being considered. This boundary is not the Earth’s physical surface, 
only one of its approximations, that is: the geoid, in the case of the Stokes’ ap-
proach or the telluroid -a surface in close proximity (of the order of ±100m) to the 
Earth’s physical surface- in the Molodensky’s approach respectively.  
Theoretically, the Stokes’ problem requires the knowledge of reduced (to the ge-
oid) gravity anomalies which, in turn, requires the availability of levelling and 
gravity measurements (i.e. orthometric heights) all over the boundary surface. Re-
spectively, in the Molodensky’s approach the telluroid must be known a priori in 
order to reduce the measured surface gravity anomalies on it, i.e. to compute the 
corresponding gravity anomaly on the telluroid as 

Δg = g(P) – γ(Q) (5) 

where g is the actual (measured) gravity at point P on the Earth’s surface and Q is a 
point on the telluroid. Hence, in order to compute the normal gravity γ at the point 
Q on the telluroid one needs the corresponding normal height H*. In practice, as 
the gravity anomaly values Δg must be known on the whole Earth for computing 
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the height anomaly ζ, the length of the ellipsoidal normal between the Earth’s sur-
face and the telluroid, there are errors introduced in the computation of ζ because 
of the off-sets of the levelling datums.  
Let’s consider S to be the Earth’s physical surface and W and g be, respectively, the 
actual geopotential and gravity vector on this surface. Then there exists a relation 

g = F (S, W), (6) 

that is, the gravity vector g on S is dependent on the geometry of surface S and the 
value of the geopotential W on it, and this dependence is expressed by F which is a 
nonlinear operator.  
In the Molodensky’s problem the task is to determine S, the Earth’s surface, if g 
and W are given everywhere on it. Formally, we have to solve (6) for S 

S = F1 (g, W), (7) 

that is, to get geometry from gravity.  
Nowadays, with the establishment of International Terrestrial Reference Frame 
(ITRF) and the development of the Global Satellite Navigation Systems (GNSS), 
we can determine very precisely the 3D positions of points on the Earth’s surface 
that represents the boundary surface for the GBVP being considered. In this case, 
the geometry S is considered known, and we can now solve (6) for W 

W = F2 (S, g), (8) 

that is, to get potential from gravity.  
In spite of the similarities between the two approaches, between getting geometry 
from gravity or getting potential from gravity, there exists a fundamental difference 
between them: equation (7) solves a free-boundary problem, since the boundary S 
covered with boundary data is taken a priori as unknown and ‘free’ to move only in 
the vertical direction, so that the information about the normal heights is already 
used a priori in order to fix the boundary, i.e. to obtain the telluroid. By contrast, 
equation (8) solves a fixed-boundary problem, since the boundary S is given, so 
that the realization of normal heights may be controlled by the independently de-
termined quantities h and ζ. In mathematical terms, fixed-boundary problems are 
usually simpler than free ones.  
Within the framework of BVP theory, the geoid determination problem is more 
suitably classified as an altimetry-gravimetry boundary value problem (AGBVP). 
The most important relevant formulations of AGBVPs or as they are discussed in 
the literature under the shorter name of ‘Altimetry-Gravimetry Problems’ (AGPs) 
are summarized in Table 1, where besides g and C, another observable at the points 
of measurements is considered, the geometric (ellipsoidal) heights h determined 
from precise GNSS positioning, and σ represents, in compact notation, the coordi-
nate pair or solid angle (φ, λ). 
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Table 1. Basic formulations of AGBVPs 

Boundary Value Problem Part  

of the Earth’s  

surface 

Treatment  

of Parameters AGP-I AGP-II AGP-III 

Known g, σ, C g, σ, C g, σ, h 
Land 

Unknown h h W 

     

Known σ, h, C g, σ, h σ, h, C 
Sea 

Unknown g W g 

 
The type of AGP-I formulation, is a favourable approach for global or regional 
applications, whereby the ellipsoidal heights h being used are determined on the 
sea surface by satellite radar altimetry, when ship gravity data are not available or 
their coverage is poor. The AGP-II approach is often used in local areas close to 
coastlines where there is usually poor steric levelling data, but adequate coverage 
of ship gravity data and, when geopotential numbers on the sea surface are not 
available, ellipsoidal heights h are determined on the sea surface by satellite radar 
altimetry. The AGP-I and -II are free-boundary problems on land and fixed-
boundary problems on sea. It has been pointed out in the geodetic literature, e.g. by 
Lehmann (2000), that the treatment of AGPs in spherical and constant radius ap-
proximation leads to mathematically well-posed problems in the case of the AGP-I 
and -II, while the AGP-I may exhibit features of ill-posedness in special situations. 
Well-posedness of AGPs is one of the most exciting (and still largely unsolved) 
problems in geodesy which is usually considered for mathematical analysis.  
The AGP-III formulation is currently of interest for hybrid applications whereby, in 
the sea areas ellipsoidal heights h are determined by satellite altimetry, replacing 
sea gravity there, and on land, observed ellipsoidal heights h are determined by 
GNSS, replacing geometric levelling data. In contrast to the AGP-I and -II, the 
AGP-III is a fixed-boundary problem. Furthermore, this is generally a well-posed 
BVP, as shown in a more recent analysis on this formulation by Panou et al. (2011) 
and from previous numerical solutions presented by Čunderlík and Mikula (2009). 
Overall, the treatment of a fixed AGP formulation is considered as the most impor-
tant for the near future, since, in practical terms, this would mean that height in-
formation on land could be provided entirely by space techniques rather than by the 
costly and time consuming conventional geometric levelling procedures.  
In summary, considering the distinct features of the AGP-III, that is, being a fixed 
BVP, suitable of utilizing the data from the modern geodetic technologies (i.e. 
mixed), and being also a well-posed BVP, our approach to the height datum unifi-
cation problem is based on the variant formulation outlined in the next section. 
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4. A variant formulation of a fixed mixed BVP 

Realization of a unified global height datum, based on the joint processing of ter-
restrial and satellite geodetic data, admits a new variant formulation of the linear 
fixed mixed (altimetry-gravimetry) BVP. The linear fixed mixed problem can be 
mathematically described for each part of the Earth’s surface by using the follow-
ing form 

∇
2T = 0   in the 3D space outside the Earth’s physical surface 

T = T* + δW  on sea 

h

T

∂

∂
 = – δg  on land 

T = O(1/r)  as r→  ∞  

where ∇2 is the Laplace operator, T is the (unknown) disturbing potential, δg = g–γ 
denotes the gravity disturbances that correspond to difference between the meas-
ured gravity data on land (i.e. on the Earth’s surface) and the normal gravity from a 
reference equipotential ellipsoid of rotation (e.g. GRS80) that can be computed at 
the same point by knowing its ellipsoidal height; T* represents ‘observed’ values 
for the disturbing potential (e.g. from satellite altimetry, ship-borne gravimetry, etc. 
through the application of the well-known Bruns’ formula) which requires the 
dynamic ocean topography to be removed e.g. by ocean levelling; δW is a perturba-
tion of the Dirichlet boundary condition which, in this case, represents the datum 
disturbance parameter δW = WO – UO, that is, the difference between the actual 
(unknown) potential WO and UO, the normal potential on the surface of the refer-
ence ellipsoid (which is also used in the linearization process).  
In practice, the value WO of the actual gravity potential on the geoid represents a 
fundamental height datum parameter. Since WO is not precisely known, the value 
UO is not necessarily equal to the traditionally used theoretical or approximate 
values of WO. The determination of a ‘real world’ WO value (i.e. derived from 
global data) has not been considered until recently, when it was demonstrated by 
Sánchez (2008) that a reference geopotential value WO can indeed be estimated 
from global satellite altimetry data and gravity disturbances obtained from a global 
Earth Gravity Model (EGM). This is a significant step forward, since the continu-
ously improving modern geodetic techniques, especially those involving the pre-
cise determination of geometrical coordinates by GNSS positioning and satellite 
altimetry, and the accurate gravity field models provided by the new satellite mis-
sions, can now facilitate the accurate estimation of a suitable WO value by evaluat-
ing powerful theoretical approaches that 30 years ago were not applicable in prac-
tice. 
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5. Outline of proposed method 

The method outlined in this paper, as based on the previously described AGP for-
mulation, can be explained with the simple example illustrated by Figure 1 which 
shows two equipotential surfaces defined by a reference station (fundamental sta-
tions I and II) in the two local height datums I and II respectively.   
As long as we select the same reference ellipsoid, the quasigeoid determined by 
this method would make possible to establish a reference surface that contains 
middle and high frequency height components, but without reference to any local 
height datums. Therefore, the height anomalies ζ0, as obtained from the solution of 
the previously described boundary value problem can be regarded as a ‘global’ 
height datum.  
On the other hand, let us assume that in the local height datum I, for an arbitrary 
point A we know its normal height HA,I. The local height anomalies ζA,I can be ob-
tained by a combination of GPS/GNSS and levelling data 

ζA,I = hΑ – HA,I (9) 

where hΑ denotes the ellipsoidal height obtained from GNSS procedures and HA,I 
corresponds to the normal height from levelling based on the local height datum Ι 
involved. 

 

 

Figure 1. Height datum problem 

 
If common ellipsoidal parameters are adopted for the computation of both local and 
global height anomalies, we obtain the following equation 

ΔWI = ζA,I γΑ – ζA0 γΑ = (ζA,I – ζA0) γΑ = ΔζA,I γΑ (10) 
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where ΔWI is the potential difference between the global and local height datum I 
and ζA0 is the height anomaly for point A as obtained from the solution of the BVP. 
Note that, local height anomalies ζA,I and the height anomalies ζA0 must correspond 
to same point A on the Earth surface. Similar equations to (9) and (10) hold for an 
arbitrary point B on local height datum II.  
Considering the case of two local height datums, if we calculate their datum poten-
tial differences to the global datum individually, using eq. (10), the potential differ-
ence between two local height datums shall be given as 

WI – WII = ΔWI,II = ΔζA,I γA – ΔζB,II γB (11) 

where WI and WII represent the potential of the respective local height datums I and 
II, ΔWI,II is the potential difference between the two local height datums and ΔζA,I 
and ΔζB,II represent the height differences between global height datum and local 
height datum at points A and B respectively.  
In practice, this process would be applied to as many points on the local height 

datum I, in order to estimate a mean value 
I

WΔ  and its corresponding standard 

deviation for the potential difference between the global height datum and the local 
height datum I. Similarly, the process would be applied to as many points on the 

local height datum II, in order to estimate a mean value 
II

WΔ  and its correspond-

ing standard deviation for the potential difference between the global height datum 
and the local height datum II. Finally, we can estimate the potential difference 

III
W

,

Δ  between the two local height datums I and II. This same process can be 

applied for many local height datums, i.e. by applying eq. (10), and subsequently, 
the mutual relation between any pair of local height datums can be carried out by 
applying eq. (11). Therefore, a full unification can be realized in this truly inte-
grated way.   
 
 
6. Conclusions 

In this paper we proposed the use of a fixed mixed BVP for attacking the classic 
height datum unification problem. The main advantage of this approach is that it is 
independent of any local height datum and that it makes use of all modern geodetic 
measurements (e.g. satellite altimetry at sea and GNSS-based geometric heights on 
land). The main outcome of the method is the potential differences between each 
local height datum with the global height datum realized through the solution of the 
aforementioned BVP that leads to the estimation of the quasigeoid. A comparison 
of potential differences from different height datums will then yield information on 
their relative vertical positions. 
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