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Abstract. The scope of this paper is to investigate the influence of the minimum 

constraints (MCs) on the reference frame parameters in a free-net solution. The 

non-estimable part of these parameters is analyzed in terms of its stability under a 

numerical perturbation of the constrained datum functionals. In practice, such a 

perturbation can be ascribed either to hidden errors in the known coordi-

nates/velocities participating in the MCs, or to a simple change of their a priori 

values due to a datum switch on a different fiducial dataset. In addition, a perturba-

tion of this type may cause a nonlinear variation to the estimable part of the refer-

ence frame parameters, since it theoretically affects the adjusted observations that 

are implied by the network's nonlinear observational model. The aforementioned 

effects have an impact on the quality of a terrestrial reference frame that is estab-

lished via a minimum-constrained adjustment, and our study shows that they are 

both controlled through a characteristic matrix which is inherently linked to the 

MC system. 

 

 

1. Introduction 
 

The establishment of terrestrial reference frames (TRFs) is a fundamental task in 

geodesy, closely related to the zero-order design or datum choice problem of net-

work optimization theory (Grafarend 1974, Teunissen 1985). Due to the inherent 

datum deficiency in all types of geodetic measurements, a set of external condi-

tions is always required to obtain a unique and well defined TRF realization from a 

geodetic network adjustment. The use of minimum constraints signifies an optimal 

choice of such conditions in the sense that they provide the required information 

for the datum definition without interfering with the network’s estimable character-

istics. As a result, a minimum-constrained network is theoretically free of any 

geometrical distortion that could originate from the external datum conditions, 

while its estimable TRF parameters (if any) are determined solely from the avail-

able measurements without being affected by the user’s minimum constraints. The 

latter affect only the non-estimable part of the reference frame parameters which is 

not reduced by the data, yet they influence the quality of the entire coordinate-

based representation of the adjusted network (e.g. the covariance matrix of the es-

timated positions and their external reliability level). 

A realized TRF through a network adjustment is subject to quality limitations 
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originating from the type of minimum constraints that are used for the datum defi-

nition. This is a well known fact to geodesists which is theoretically justified by the 

dependency of the covariance matrix of the estimated positions with regard to the 

selected minimum constraints. The propagated data noise on the realized TRF de-

pends strongly on the chosen datum conditions, a fact that has been the foundation 

of the zero-order network optimization and motivated the formulation of the so-

called inner constraints for geodetic network adjustment problems (Blaha 1971a, 

1982). An equally important issue, which however has not been systematically 

investigated in the geodetic literature, is the frame stability that can be achieved 

from a network adjustment with a given set of minimum constraints. This repre-

sents a crucial aspect for the overall quality of a TRF realization and the objective 

comparison of different datum definition strategies. The basic question associated 

with this issue is not concerned with the propagated effect of the measurement er-

rors into the adjustment results, but rather with the identification and quantification 

of the criteria under which a set of minimum constraints can provide a more stable 

TRF than another set of minimum constraints for the same network. 

The main objective of this paper is to present a general framework for analyzing 

the frame stability in minimum-constrained networks. For this purpose, the influ-

ence of minimum constraints  

o
( )− =H x x c  on the realized TRF will be studied 

via a ‘perturbation analysis’ for the network solution under a variation dc of the 

constrained datum functionals. In practice, such a variation can be attributed either 

to existing errors in the coordinates/velocities of the reference stations that partici-

pate in the datum conditions, or to a change of their a priori values due to a datum-

switch into a different fiducial dataset (note that a well designed geodetic network 

should be fairly robust against such datum disturbances). Our analysis will show 

that a fundamental matrix always exists which characterizes the frame stability of 

any set of minimum constraints in a given network, and it can be used as a criterion 

matrix for an objective analysis of different datum definition strategies.  

An important aspect that is also treated in our study is the geometrical distortion on 

a minimum-constrained network due to the aforementioned variation of the con-

strained datum functionals. This is an indirect nonlinear effect that remains hidden 

within the linearized framework of least-squares adjustment in rank-deficient 

nonlinear models, yet it theoretically exists and it can affect the estimable charac-

teristics of a dc-perturbed network solution. From a geodetic perspective, such an 

effect corresponds to a nonlinear propagation of datum related errors into the ad-

justed observations of a minimum-constrained network, and it may cause a degra-

dation of their statistical accuracy that is implied by their formal covariance matrix. 

 

 

2. Free networks and minimum constraints 

2.1 General background 

A m×m singular system of the so-called normal equations (NEQs) 
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o
( )  − =� x x u  (1) 

provides the fundamental setting for network adjustment problems and the estab-

lishment of spatial reference frames from terrestrial and/or space geodetic data. 

Typically, the above system is deduced from the linearized least squares (LS) in-

version of a coordinate-based nonlinear parametric model ( ( )= +y f x v ) that de-

scribes a noisy set of geodetic measurements in a local, regional or global network. 

Its analytic form depends on the rank-deficient Jacobian matrix 
o

( )=
x

A f x  of the 

network observables according to the well known relationships 

 T
=� A PA     and     

T

o
( ( ))= −u A P y f x  (2) 

where 
o

x  is an initial approximation of the model parameters, P is the data weight 

matrix, and x is the unknown vector originating either from a static (coordinates 

only) or a dynamic (coordinates and velocities) modeling of the network stations 

with respect to an Earth-fixed reference system. 

Any solution of Eq. (1) corresponds to what is commonly known as a free-network 

(free-net) solution (Sillard and Boucher 2001) and it holds a key role for the opti-

mal analysis of a geodetic network on the basis of datum-deficient noisy measure-

ments. Such solutions are theoretically equivalent to each other in the sense that 

they produce the same linearly adjusted observables ŷ , and thus maintaining the 

same information about the network’s estimable characteristics that are embedded 

in the given measurements. Their basic characteristic is that they provide un-

equivocal least-squares fit to the data vector y and they offer the standard frame-

work for the realization of TRFs that directly reflect the data quality without being 

distorted by external datum-related biases.  

The differences between free-net solutions are rigorously described through a lin-

ear transformation that depends on the TRF parameters which are not reduced (de-

fined) by the geodetic observables in the underlying network. This transformation 

is known in the geodetic literature as S-transformation (Baarda 1973; van Mierlo 

1980) and it provides a fundamental tool for the frame-based analysis in network 

adjustment problems. 

 

2.2 Minimum constraints 

The determination of a single solution of Eq. (1) requires a set of external condi-

tions to specify a coordinate frame with respect to which the adjusted positions of 

the network stations shall be computed. A free-net solution is always associated 

with a set of k independent linear equations 

  

o
( )− =H x x c  (3) 

whose number is equal to the rank defect of the normal matrix (k=m-rank�). These 

equations constitute the so-called minimum constraints (MCs) and they are theo-
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retically satisfied by one, and only one, solution of the rank-deficient system 

 

o
( )− =� x x u . The terms H and c characterize completely a free-net solution and 

they provide the necessary information for its numerical computation either 

through a constrained LS estimator from the data vector y, or through a S-

transformation based on another solution of the same NEQ system. 

From a theoretical perspective, the k×m matrix H needs to be of full-row rank and 

it has to satisfy the algebraic condition 

   rank   rank rank   ( )   m k k m
⎡ ⎤

= + = − + =⎢ ⎥
⎣ ⎦

�
� H

H

 (4) 

whereas the k-dimensional vector c is free to take any values within the column 

space of the matrix H. The previous condition ensures the inversion of the ex-

tended NEQ system 

    

T T

o
( ) ( )  + − = +� H WH x x u H Wc  (5) 

which contains the (minimum) required information for the datum definition in 

terms of a pseudo-observation vector c that is associated with a design matrix H 

and a symmetric positive definite weight matrix W. Given the condition in Eq. (4), 

the extended NEQs have a unique solution that satisfies both the original NEQ sys-

tem (1) and the MC system (3), and it is independent of the weight matrix W (a 

fact that is sometimes overlooked in the geodetic literature)1. 

The theoretical freedom in the numerical selection of the auxiliary vector c could 

result in free-net solutions that are mathematically correct (in the sense that they 

satisfy both the singular NEQs and the imposed MCs) yet geodetically problematic 

due to the unreasonable magnitude of the estimated positions and/or the significant 

distortion in the geometrical characteristics of the linearly adjusted network; for 

some practical examples, see Xu (1997). In fact, even a MC vector c with arbitrar-

ily small entries may have a ‘distorting influence’ on the free-net solution from Eq. 

(5) if a slight perturbation in its values is significantly amplified by the matrix 

 

T T1( )−+� H WH H W . Note that this effect does not imply an ill-conditioned form 

for the constrained normal matrix  

T
+� H WH , yet it points to a frame-related 

instability for the adjusted network with respect to the adopted MCs. 

 

2.3 Algebraic vs. geodetic admissibility of minimum constraints 

The admissibility of the minimum constraints  

o
( )− =H x x c , as stated in most 

                                                 

1
 The independence of the solution of Eq. (5) from the weight matrix W does not hold if the system 

 ( )o− =H x x c  contains more equations than the network datum defect. In this case the solution of Eq. (5) 

will not generally satisfy Eq. (1) and Eq. (3); such ‘over-constrained’ adjustment schemes are not treated in 

this paper. 
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geodetic textbooks and related papers, relies on the fundamental condition (4) or on 

some of its algebraic equivalent forms that can be found in the relevant literature 

(e.g. Blaha 1971a, 1982; Koch 1999; Sillard and Boucher 2001). This algebraic 

admissibility depends on the structure of the matrices H and �, and it is generally 

fulfilled by the datum implementation strategies that are used in geodetic practice 

(e.g. fixing a minimum number of station positions or applying inner constraints on 

the non-estimable TRF parameters over some or all of the network stations). A 

point of concern is the existence of degenerate network configurations that may 

cause a problematic adjustment for certain options of datum constraints due to the 

remaining rank deficiency in the extended NEQ system. Such special cases of sin-

gular MCs were investigated by Blaha (1971b) and later by Papo (1987), but it was 

Veis (1960) who first pointed out the possibility of singularities in the LS adjust-

ment of satellite geodetic networks due to a geometrical faulty structure of the da-

tum constraints. 

An algebraically admissible set of minimum constraints guarantees the inversion of 

the augmented normal matrix  

T
+� H WH , yet it is not sufficient to secure a geo-

detically meaningful solution for the original datum-deficient NEQs. In order to 

better understand the meaning of this peculiar statement, it is helpful to clarify the 

role of the system  

o
( )− =H x x c  in the context of free-net adjustment. The primary 

aim of this system is not the designation of any arbitrary coordinate frame, but the 

establishment of a coordinate frame in the neighbourhood of an existing frame that 

is realized by the approximate positions of the network stations. The need to refer a 

free-net solution into a TRF which is close to the one implied by the initial vector 

o
x  stems from the linearization that is implicitly associated with the formation of 

the NEQ system in Eq. (1). An attempt to overcome this restriction was presented 

some years ago from Xu (1997) by assimilating into the singular NEQs the non-

estimable TRF parameters of the network adjustment problem. Despite the theo-

retical interest of his over-parameterization approach, a free-net adjustment is (still) 

based on the logic of a ‘linearized TRF implementation’ whose practical signifi-

cance is revealed from the example mentioned in the following remark. 

Remark. The fixation of a minimum number of station coordinates to some a priori 

values does not (always) represent a valid datum definition scheme under a nonlin-

ear treatment of the rank-deficient network. Nevertheless, such an option is usable 

for the linearized minimum-constrained adjustment as it leads to a unique datum 

specification relative to the frame of the initial station coordinates; a straightfor-

ward example is depicted in Fig. 1. 

The constant vector of the MC system controls the closeness between the TRFs of 

the adjusted coordinates and the approximate coordinates at the network stations, 

on the basis of a minimum number of ‘datum functionals’ c. It is critical, though, 

that this term does not cause any detectable disturbance on the true (nonlinear) 

geometrical characteristics ˆ ˆ( )=y f x  of the adjusted network and the TRF parame-

ters that are already reduced by the available data. Moreover, a small variation of  
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Fig. 1. The minimum constraints xA=const., yA=const. and xB=const. for the adjustment of 

a horizontal trilateration network do not theoretically yield a unique datum defini-

tion, since they cannot distinguish between the two symmetrical solutions that are 

shown in the above figure. However, a unique adjusted solution is practically ob-

tained through these constraints, which is the one that lies closer to the approxi-

mate coordinates of the network stations. 

 

the elements of c (e.g. due to coordinate/velocity errors at the reference stations 

that participate in the datum constraints) should not spawn an instability in the TRF 

of the adjusted network, neither interfere with its estimable characteristics. These 

are the main aspects behind a geodetically meaningful free-net solution which can-

not be guaranteed by an admissible MC matrix H, as they are directly influenced 

by the MC vector c and the sensitivity of the constrained NEQs with respect to its 

disturbance. From a geodetic perspective the MC vector cannot take any values 

within the range of the MC matrix, a fact that creates a convoluted dependence 

among the basic components of the free-net adjustment problem. 

Let us give a didactic example concerning the minimum-constrained adjustment of 

a horizontal trilateration network based on the fixation of three coordinates over its 

stations, namely xA, yA and xB (see Fig. 2). In this case, the terms H and c have the 

general form: 

 

1 0 0 0 0

  0 1 0 0 0

0 0 1 0 0

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

H

�

�

�

 ,       

o

A A

o

A A

o

B B

  

x x

y y

x x

⎡ ⎤−
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥−⎣ ⎦

c

�

�

�

 (6) 

where o

A
x , o

A
y , o

B
x  are the approximate coordinate values, and 

A
x� , 

A
y� , 

B
x�  denote 

the fixed coordinate values which will jointly define the TRF origin and orientation  

B 

● 

● 

● 

● 

● 

● 

x 
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Fig. 2. A schematic description for the distorting effect that the minimum constraints may 

cause on the free-net solution of a horizontal trilateration network. The datum con-

ditions refer to the fixation of the x and y coordinates of point A and the x coordi-

nate of point B. If the difference of the fixed x-coordinates exceeds a critical value 

then a distortion will occur in the geometrical form ˆ ˆ( )=y f x  of the linearly ad-

justed network (in such case a convergent LS solution cannot be achieved through 

an iterative adjustment scheme). The lower two graphs depict the orientation dis-

turbance of the minimum-constrained solution under a small change in the fixed x-

coordinate of B (the numerical graph is based on an adjusted geometrical distance 

between A and B of 10 km). 

 

of the horizontal network. In the absence of any geometrical configuration defect, 

the matrix H will fulfill the condition (4) and it will impose a valid datum defini-

tion for the linearly adjusted network. However, if the value 
B
x�  (or, more pre-
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cisely, the value of the difference 
B A
x x−
� � ) exceeds a certain limit then the free-net 

solution will be deformed, thus affecting the network scale that is implicitly de-

fined through the distance measurements (see Fig. 2). The initial configuration of 

the network stations (
o

x ) plays a key role in quantifying the threshold for the ref-

erence coordinates’ variation that could cause such a problematic solution. In the 

particular example it is evident that, as the point B lies closer to the x axis, the ad-

justed network could be effectively distorted under smaller disturbances of the MC 

vector. Note that even if the difference 
B A
x x−
� �  does not exceed a critical limit, the 

orientation of the free-net solution becomes increasingly unstable in this case (see 

Fig. 2). 

Concluding this section, we need to make a final comment in view of the nonlinear 

character of LS network adjustment problems. Since a free-net solution is practi-

cally determined through an iterative adjustment scheme, any set of k datum condi-

tions  

o
( )− =H x x c  yielding a convergent LS estimate  should always lead to the 

same geometrical form ˆ ˆ( )=y f x  for the adjusted network (note, however, that a 

rigorous convergence analysis for the linearized LS solution in rank-deficient 

nonlinear models does not currently exist in the geodetic literature). The crucial 

point to be emphasized here is that a convergent free-net solution does not neces-

sarily realize a stable TRF over the network stations, and its geometrical character-

istics may be affected under a small perturbation dc of the constrained datum func-

tionals. These important issues are schematically described in Fig. 2 for the simple 

case of a horizontal network, and they will be analyzed under a more general set-

ting in Sect. 4. 

 

 

3. Mathematical background 
 

 

A number of important algebraic formulae that are relevant to the free-net adjust-

ment problem are reviewed in this section. Our presentation gives only an over-

view of the required material for the TRF stability analysis of the next sections, 

without focusing on mathematical details but rather outlining the essential theoreti-

cal tools for the purpose of this paper. 

 

3.1 Basic relationships 

The general solution of a singular NEQ system  

o
( )− =� x x u  can be expressed by 

the formula 

  

o
ˆ      ( )− −

= + + −x x � u I � � z  (7) 

where −

�  is a generalized inverse of the normal matrix �, and z is an arbitrary 

vector. The above expression is valid in view of the fundamental property 

 

T T−

=�� A A  that applies when T
=� A PA  (Koch 1999, p. 51). 
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The primary link of Eq. (7) with the formulation of the free-net adjustment problem 

is rooted in the basic formula: 

  

T 1  ( )− −

= +� � H WH  (8) 

which gives the generalized inverse of a symmetric semi-positive definite matrix � 

in terms of a full-row rank matrix H that satisfies the algebraic condition (4) and an 

arbitrary symmetric positive definite matrix W. 

When the NEQs generalized inverse originates from Eq. (8) then the condition 

 

T−

=H� A 0  is always fulfilled. Consequently, by multiplying both sides of Eq. 

(7) with the matrix H, we deduce that the general NEQs solution complies with a 

system of independent linear equations 

   

o
ˆ( )  − =H x x Hz  (9) 

which corresponds to the required MCs for the datum definition in a free-net solu-

tion. Note that the MC vector is now identified as  =c Hz , a fact that reveals an 

important issue which was implied in our previous discussions: the minimum con-

straints should form a consistent linear system and thus their constant vector must 

belong to the range of the MC matrix. Fortunately, the way that the MC vector is 

numerically constructed in the geodetic practice conforms to such a mathematical 

requirement, as it will be explained later in the paper. 

The weight matrix W that is used in the computation of −

�  does not affect the 

NEQs solution in Eq. (7) and it does not interfere with the validity of the minimum 

constraints in Eq. (9). A free-net solution remains therefore independent of the 

weighting with which the MCs are implemented into the LS adjustment algorithm; 

however, its statistical accuracy assessment may account for the prior uncertainty 

of the MC vector (see also Sect. 5). 

For any m×m NEQ system with rank defect k=m-rank� there exists a class of k×m 

full-row rank matrices E with the fundamental property (Blaha 1971a, Koch 1999) 

  

T
=AE 0    and thus    

T
=�E 0  (10) 

These matrices are identified in this paper as type-E matrices and they hold a cru-

cial role in network adjustment problems. Any type-E matrix is an algebraically 

admissible MC matrix that generates the so-called inner constraints  

o
( )− =E x x c  

with well known optimal statistical properties for the corresponding solution of the 

NEQ system. For more details, see also Blaha (1982), van Mierlo (1980), Papo and 

Perelmuter (1981). 

In the context of our present study, the following equations are of particular impor-

tance: 

  

T T T1 1( )     ( )− −

+ = −� H WH � I E HE H  (11) 

   

T T T T1 1( )   ( )− −

+ =� H WH H WH E HE H  (12) 
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where H corresponds to any MC matrix that can be associated with the original 

NEQ system. The above expressions define the fundamental projector matrices 

which are used in the formulation of the S-transformation, as described in the next 

section. 

 

3.2  S-transformation 

The S-transformation is a key tool that relates different free-net solutions of the 

same singular NEQ system. In its simplest form, it can be expressed by the for-

mula: 

 T
ˆ ˆ    ′= +x x Ε θ  (13) 

where E is a full-row rank matrix that satisfies the fundamental property (10). The 

vector θ reflects the degrees of freedom in the inversion of the rank-deficient nor-

mal matrix �, and it quantifies the difference between free-net solutions through k 

‘datum transformation parameters’. 
 
Since there are infinitely many type-E matrices, the transformation parameters θ 

are not uniquely defined and they depend on the choice of E that appears in Eq. 

(13). Their values can be determined in a straightforward way by multiplying both 

sides of the previous equation with an arbitrary MC matrix and then solving for θ, 

in which case we get:  

  

T 1 ˆ ˆ  ( ) ( )−

′= −θ HE H x x� �  (14) 

The above result is invariant with respect to the MC matrix H�  provided that both 

vectors x̂  and ˆ ′x  correspond to distinct solutions of the same NEQ system. 
 
Based on Eq. (14), the forward S-transformation may also be expressed by the 

equivalent model 

  

T T 1ˆ ˆ ˆ ˆ    ( ) ( )−

′ ′= + −x x E HE H x x� �  (15) 

where H�  denotes again an arbitrary MC matrix. If the S-transformed vector x̂  

needs to satisfy a particular set of minimum constraints  

o
( )− =H x x c , then Eq. 

(15) takes the form: 

   

T T T T

o

1 1ˆ ˆ  ( ( ) )   ( ) ( )− −

′= − + +x I E HE H x E HE c Hx  (16) 

The last equation provides the fundamental basis for analyzing the effect of the MC 

vector c (and its disturbance) on the geodetic admissibility of a free-net solution 

that is compliant with a given MC matrix H. 

 

3.3 ‘Helmertization’ of S-transformation 

For every singular NEQ system there exists a type-E matrix which is independent 

of the data weighting and it depends only on the datum defect and the spatial con-
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figuration of the network stations (
o

x ). The corresponding S-transformation pa-

rameters θ admit a straightforward interpretation and they reflect (the differences 

of) the non-estimable TRF parameters in x̂  and ˆ ′x  due to the different datum con-

ditions that were used in each solution. 

The aforementioned matrix is formally known as the inner-constraint matrix and it 

stems from the linearized Helmert transformation that describes a differential simi-

larity between ‘nearby’ Cartesian coordinate frames over an �-point network 

(Blaha 1971a, p.23) 

 T
    

TRF TRF ′
′= +x x G q  (17) 

where the Helmert transformation matrix G is 

  

1 1 N N

1 1 N N

1 1 N N

1 1 1 N N N

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0  

0 0

0 0

x

y

z

x

y

z

s

t

t

t

z y z y

z x z x

y x y x

x y z x y z

ε

ε

ε

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′ ′ ′− −=
⎢ ⎥

′ ′ ′ ′⎢ ⎥− −
⎢ ⎥

′ ′ ′ ′− −⎢ ⎥
⎢ ⎥

′ ′ ′ ′ ′ ′⎣ ⎦

G

� �

� �

� �

� �

� �

� �

� �

 (18) 

and the vector q contains the seven parameters of the linearized similarity trans-

formation, namely three translations (tx, ty, tz), three small rotation angles (εx, εy, εz) 

and one differential scale factor (δs). 

The inner-constraint matrix E consists of the particular rows of G that correspond 

to the non-estimable TRF parameters of the observed network. In case of dynamic 

networks, where both coordinates and velocities need to be jointly estimated from a 

combined adjustment of time-dependent data, the matrix G (and also E) should be 

expanded to include additional rows for the rates of the TRF parameters according 

to the time-varying similarity transformation model; see Sillard and Boucher 

(2001), Altamimi et al. (2002), Soler and Marshall (2003). 

The Helmert matrix G and the parameter vector q of the linearized similarity trans-

formation model, for a given network, can be generally decomposed as: 

   

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

E
G

E
,       

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

θ
q

θ
 (19) 

where E  is the inner-constraint matrix that refers to the non-estimable TRF pa-

rameters θ  of the underlying network, and E  is the complement matrix corre-

sponding to the estimable TRF parameters θ  that are inherently defined through 

the network observations. 



Anatomy of minimum constraints in geodetic network adjustment 237 

 

4. MC-perturbation analysis of free networks 
 

 

The behaviour of a free-net solution under a perturbation of its associated MCs 

reflects (an important part of) the TRF quality that can be achieved through a geo-

detic network adjustment. Our aim in this section is to study the above effect and to 

expose any problems related to the geodetic admissibility of a set of MCs for a 

given network. 

 

4.1 Effect on the network’s non-estimable characteristics 

Let x̂  be a free-net solution of a singular NEQ system that is compliant with a par-

ticular set of minimum constraints, namely  

o
( )− =H x x c . The disturbance of such 

a solution due to a variation of the constant vector c is given from the expression: 

 T T 1ˆ   ( )−=dx E HE dc  (20) 

which is obtained by differentiating the S-transformation formula in Eq. (16). Al-

ternatively, the previous equation may be derived through the differentiation of the 

free-net solution from the extended NEQs in Eq. (5) taking also into account the 

fundamental relationship in Eq. (12). 

The induced disturbance of the non-estimable TRF parameters in the adjusted net-

work is 

 T 1  ( )−=dθ HE dc  (21) 

and it essentially corresponds to the S-transformation parameters between the ini-

tial solution (based on H and c) and the disturbed solution (based on H and c+dc). 

Note that the auxiliary matrix W does not influence any of the previous terms due 

to the algebraic insensitivity of free-net adjustment with respect to the MCs weight 

matrix. 

The last equation is of fundamental value for the analysis of free networks as it 

dictates the influence of the MCs to each of the non-estimable frame parameters. 

The inverse of the square matrix T
HE  controls the datum sensitivity in the net-

work solution and it has a key role for the frame stability in the presence of a per-

turbation (error) in the selected minimum constraints. This matrix is not necessarily 

diagonal, a fact that signifies that each constraint may affect more than one, or even 

all, of the non-estimable TRF components in the adjusted network. 

The geodetic admissibility of the minimum constraints  

o
( )− =H x x c  is influenced 

by the form of the matrix T 1( )−HE . Depending on the numerical structure of this 

matrix, an ‘unstable’ free-net solution could emerge through Eq. (5) or (16) in the 

sense that a small error in the datum conditions may corrupt significantly not only 

the non-estimable TRF parameters but also the estimable information that is con-

tained in the linearly adjusted observations (see next section). The occurrence of 
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this unfavorable effect depends on the spatial configuration of the underlying net-

work in tandem with the type of its datum deficiency and the ‘geometry’ of the 

selected MCs, all of which are reflected into the TRF stability matrix T 1( )−HE . 

As an example, let us recall the simple case of the horizontal trilateration network 

given in Fig. 2. The minimum constraints in this example refer to the fixation of 

the three coordinates xA, yA, xB, and they lead to the following matrix expressions: 

 

o

A

T o

A

o

B

1 0

 0 1

1 0

y

x

y

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎣ ⎦

HE  (22) 

and 

  

o o

B A

T
o o o o

o o A A B A

A B

1

0
1

( )  

1 0 1

y y

x y y x
y y

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥−
⎢ ⎥−⎣ ⎦

HE  (23) 

If the azimuth between the datum points A and B is close to ±90° ( o o

A B
y y≈ ) then a 

LS adjustment with respect to an ‘unstable’ datum will take place from which both 

the TRF origin and orientation will be weakly defined. Note that similar problems 

may also arise in other types of static or dynamic 2D/3D networks whose datum 

definition is associated with a ‘problematic’ matrix T 1( )−HE . 

 

4.2  Effect on the network’s estimable characteristics 

The estimable characteristics of a free network are rendered into two basic compo-

nents: the vector of the adjusted observations and the TRF parameters that are in-

herently defined from the available measurements. Theoretically, both of these 

components remain invariant after a numerical perturbation (dc) of the MCs or, 

more generally, under any S-transformation applied to the estimated vector x̂ . This 

property is valid within the linearized framework of LS inversion in rank-deficient 

nonlinear models, yet it does not provide an exact assessment of the distortionless 

behavior in any MC solution. Some general aspects about the potential distortion of 

the estimable characteristics of free networks will be now outlined. 

 

Adjusted observations 

The vector of the linearly adjusted observations from a LS network adjustment is 

given by the formula 

 
 

 

o o

o o o

ˆ ˆ  ( )  ( ) 

ˆ ( )  ( ) ( )

= + −

= + −
x

y f x A x x

f x f x x x
 (24) 
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Considering an iterative implementation of the network's adjustment algorithm 

(where the approximate vector 
o

x  is replaced at each step by the previously esti-

mated position vector x̂  until a satisfactory convergence is achieved), the above 

estimate after sufficient iterations is practically compatible with the original 

nonlinear observational model, that is ˆ ˆ( )y f x� . 

The coordinate-based disturbance of the adjusted observations is expressed as: 

  

ˆ ˆ  =dy Adx  (25) 

which, in view of Eq. (20), becomes 

 T T 1ˆ   ( )   −

= =dy AE HE dc 0  (26) 

thus confirming the invariance of the adjusted observations under a MC distur-

bance within the free-net adjustment. 

The previous property holds only to a first-order approximation of the observa-

tional model since it neglects the contribution of its nonlinear terms to the variation 

of the network observables. Based on a second-order approximation, for example, 

we would have that 

 

�

 

 

 

 

( , )

( , )

ˆ ˆ ˆ  ( ) 

ˆ ˆ ( )  

ˆ ˆ 

+
= +

+ +

= + +

H c dc

H c

0

y f x dx

f x Adx ξ

y Adx ξ

�  (27) 

where ξ  denotes the second-order term in the Taylor series expansion of the ad-

justed observables for the perturbed free-net solution.  

The disturbance of the adjusted observables, up to a second order, is: 

 
  ( , ) ( , )ˆ ˆ ˆ    
+

= − =
H c dc H c

dy y y ξ  (28) 

where each element of ξ  is given by the quadratic expression 

   

T1
ˆ ˆ  

2
i iξ = dx Q dx  (29) 

and iQ  is the Hessian matrix of the respective observation. Taking into account 

Eq. (20), the previous equation takes the form 

 T T T T1 11
   ( ) ( )

2
i iξ − −

= dc EH EQ E HE dc  (30) 

or equivalently 

 T T1
   

2
i iξ = dθ EQ E dθ  (31) 
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Therefore, a MC disturbance causes a change in the adjusted observables which are 

implied by the original nonlinear model and thus affects the network’s estimable 

characteristics. The last equation is particularly important as it relates the nonlinear 

variation in each adjusted observable to the perturbation of the non-estimable 

frame parameters.  

 

The meaning of  iξ  

The terms iξ  represent an important nonlinear element that has been neglected up 

to now in geodetic network analysis. Their values correspond to the geometrical 

effect of ‘transformed linearization errors’ between TRFs with respect to which a 

free-net solution can be determined. In our case, the corresponding frames arise 

from the MC systems  

o
( )− =H x x c  and  

o
( )− = +H x x c dc , which do not neces-

sarily share the same behavior regarding the influence of linearization errors in the 

free-net adjustment. From Eq. (30) we can conclude that the TRF stability matrix 

plays a role in controlling whether a MC disturbance is able to trigger significant 

linearization errors in the geometrical characteristics of the adjusted network. 

 

Estimable TRF parameters 

Following the notation given at the end of Sect. 3.3, let us model the difference 

between the initial ( x̂ ) and the perturbed ( ˆ ˆ+x dx ) MC solutions in terms of a (full) 

similarity transformation 

 

T

T T

ˆ    

 

=

= +

dx G dq

E dθ E dθ

 (32) 

where dθ  and dθ  are the changes of the non-estimable and the estimable TRF 

parameters, respectively. Based on a simple LS adjustment of the above model and 

taking into account that the vector ˆdx  is given by the perturbation formula (20), we 

obtain the result 

 =dθ 0    and   T 1( )−=dθ HE dc  (33) 

as it should be expected due to the theoretical invariance of any estimable quantity 

under a MC perturbation within a free-net solution. 

However, the aforementioned invariance is an apparent theoretical element that 

exists only within the linearized framework of the differential similarity transfor-

mation. A simple approach to quantify a likely variation of the estimable TRF 

characteristics in a dc-perturbed free network is to perform a stepwise LS estima-

tion of the similarity transformation parameters from certain types of nonlinear 

datum functionals (the latter being respectively computed from the vectors x̂  and 

ˆ ˆ+x dx ). For example, a TRF scale-change factor may be directly estimated from 

chord differences over an independent set of network baselines, whereas TRF rota-
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tion parameters can be obtained from the differences of appropriately formed direc-

tional angles among the network stations; for more details on such stepwise 

schemes for transformation parameter estimation see Leick and van Gelder (1975) 

and Han and van Gelder (2006). This approach has been actually implemented in a 

numerical example that is presented in Sect. 5. 

 

4.3 A note on the TRF stability matrix 

In the preceding sections we exposed the role of the matrix T 1( )−HE  in free-net 

adjustment problems. For any set of minimum constraints  

o
( )− =H x x c  in a rank-

deficient NEQ system, the aforementioned matrix dictates (i) the stability of the 

non-estimable frame parameters and (ii) the second-order nonlinear variation of the 

geometrical characteristics in the linearly adjusted network, under the presence of a 

perturbation (error) in the MC vector c. 

In every network adjustment there exists an algebraic form for the MCs such that 

their TRF stability matrix always becomes a unit matrix. Indeed, if we multiply the 

original system  

o
( )− =H x x c  with the matrix T 1( )−HE  then an equivalent set of 

minimum constraints is obtained 

  

T T

o

1 1( ) ( )  ( )− −

− =HE H x x HE c  (34a) 

or, in a more compact form 

  

o θ
( )  − =B x x c  (34b) 

where T 1( )−=B HE H  and T

θ

1( )−=c HE c . Obviously, the TRF stability matrix of 

the above MCs is  

 T T T1 1 1( )  (( ) )  − − −

= =BE HE HE I  (35) 

whereas the perturbations of the non-estimable quantities in the adjusted network 

are now given by the simplified expressions 

 T

θ
ˆ   =dx E dc  (36) 

 
θ

  =dθ dc  (37) 

Hence, it seems that the MCs in Eq. (34) are preferable for the implementation of a 

free-net adjustment as they ensure uniform stability and zero aliasing on the frame 

parameters under an error in the constrained datum functionals; see Eq. (21) vs. Eq. 

(37). This is however only a pseudo-regularization characteristic of the constrained 

LS adjustment since the effect of the original TRF stability matrix remains hidden 

within the vector θc  (and its possible variation) as indicated by the relationship 

 T

θ

1  ( )−=dc HE dc  (38) 
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From a geodetic perspective, the importance of the matrix T 1( )−HE  is due to the 

fact that a type-dc  disturbance of a free network is more relevant than a generic 

type-
θ

dc  disturbance. A brief explanation of this vital fact is provided in the rest of 

this section. 

Despite the equivalency of the MC systems  

o
( )− =H x x c  and  

o θ( )− =B x x c  (i.e. 

both of them give theoretically the same free-net solution) their constrained ele-

ments are fundamentally different and they depend on some external TRF informa-

tion ( ext
x ) according to the hierarchical scheme:  

 ext
x   →     

ext

o
( )= −c H x x    →     

T ext

θ o

1( ) ( )−

= −c HE H x x  (39) 

The vector c contains the reduced values for a minimum number of datum func-

tionals, such as the coordinates at individual points, the azimuth of a specific base-

line, or other more complicated types like the position/velocity of the network’s 

centroid or the magnitude of the network’s angular momentum over some or all of 

its stations. These values are determined within a linear approximation from ext
x  

and 
o

x  − the MC matrix H contains the partial derivatives of the constrained da-

tum functionals with respect to the network station positions. On the other hand, 

the vector θc  represents the (non-estimable) transformation parameters between 

ext
x  and 

o
x  that are inferred from the differences of the preceding datum func-

tionals in each frame. 

Both of the previous MC systems force the free-net solution x̂  to be computed in 

the same frame as ext
x  in the following sense 
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T ext
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o θ

1
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1 1

1

ˆ  ( ) ( ) 

ˆ ( ) ( )  ( ) ( )

ˆ ( ) ( ( )  ) 

ˆ ( )  

 

−

− −

−

= −

= − − −

= − −

= − −

=

x x

c

θ HE H x x

HE H x x HE H x x

HE H x x c

B x x c

0

�������

 (40) 

that is, the (non-estimable) transformation parameters between x̂  and ext
x  vanish 

when their determination is based on the datum functionals of the MC matrix H. 

Any hidden errors in the external TRF information imply a disturbance to the con-

strained elements in Eq. (39), thus causing a variation to the adjusted network as 

discussed in Sect. 4.1 and 4.2. The matrix T 1( )−HE  is therefore the network’s 

‘frame filter’ against the ext
x -related datum errors (which are given by 
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ext
=dc Hdx ) and it controls their propagated effect into the various components of 

the free-net solution.  

 

 

5. Reference frame stability of MCs from a stochastic perspective 

 

Thus far the role of the matrix T 1( )−HE  has been considered from a deterministic 

perspective in view of ‘ill-conditioned’ datum definition schemes in free networks. 

Such schemes arise from MCs with a problematic TRF stability matrix and they 

can lead to a mathematically correct but geodetically improper (frame unstable) 

free-net solution. Note that the frame-related instability does not interfere with the 

inversion of the constrained normal matrix  

T
+� H WH  but it affects only the be-

havior of the matrix operator 

  

T T T T1 1( )   ( )− −

+ =� H WH H W E HE  (41) 

which acts on the constrained datum functionals c within the LS adjustment algo-

rithm. 

We shall now adopt a statistical view of Eqs. (20) and (21) so that we may evaluate 

the reference frame stability in a free-net solution through an appropriate covari-

ance (CV) matrix θΣ . For this purpose, the perturbation vector dc in Eq. (21) is 

identified as a zero-mean random error which causes a corresponding zero-mean 

random error dθ in the non-estimable TRF parameters of the adjusted network. By 

applying the error covariance propagation to Eq. (21), we get the formula: 

 T T1 1  ( ) ( )
cθ

− −

=Σ HE Σ EH  (42) 

where θΣ  and 
c

Σ  denote the error CV matrices of the (non-estimable) TRF pa-

rameters and the constrained datum functionals, respectively. The latter is deter-

mined from the general equation 

  

prior T
  

xc
=Σ HΣ H  (43) 

which is obtained from Eq. (39) on the basis of a CV matrix prior
x

Σ  that specifies 

the accuracy of the external reference frame with respect to which the free-net so-

lution is aligned. This matrix does not need to contain prior statistical information 

for all network stations but only for those involved in the underlying MCs, and it 

can be generally expressed as  

 1prior
  

x

x⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Σ 0
Σ

0 0

 

in accordance with an equivalent partition of the parameter vector 
T

T T

1 2
⎡ ⎤=
⎣ ⎦

x x x , 
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where 
1
x  refers to the network stations with known positions in the external refer-

ence frame and 
2

x  refers to the remaining (new) network stations. In practice, it 

may originate either from the result of a previous adjustment, or by an empirical 

selection for the accuracy level of the available reference stations. 

Taking into account Eqs. (42) and (43), we finally have the result 

  

T prior T T1 1  ( ) ( )
xθ

− −

=Σ HE HΣ H EH  (44) 

which specifies, in a statistical sense, the TRF stability as a function of the adopted 

minimum constraints and the joint uncertainty (including the possible correlations) 

of the reference stations. The above matrix does not include the error contribution 

from the available measurements but it evaluates the frame stability that can be 

achieved by different choices of MCs in a given network. 

The uncertainty of the estimated station positions due to the ‘TRF-stability effect’ 

is obtained by applying the error CV propagation to Eq. (20), thus yielding 

 
 

 

 

T

T T T

T T prior T T

prior T

ˆ

1 1

1 1

  

 ( ) ( )  

 ( ) ( )  

 ( ) ( )

x

x

x

c

θ

− −

− −

− −

=

=

=

= − −

Σ E Σ E

E HE Σ EH E

E HE HΣ H EH E

I � � Σ I � �

 (45) 

where the last equality stems from (11) and (12). The matrix 
x̂

Σ  represents the 

contribution of the external frame’s noise to the total accuracy of a free-net solu-

tion, and it is related to the following CV decomposition: 

  

ˆ ˆ

  + 
x x

− −

=Σ � �� Σ  (46) 

which is obtained when a full error propagation is applied to the generalized inver-

sion formula in Eq. (7) under a stochastic interpretation for the auxiliary vector z 

(i.e. prior
xz

→Σ Σ ). 

The previous CV components, that is − −

� ��  and 
x̂

Σ , correspond to m×m singu-

lar matrices with rank defect equal to m-rank� and rank� respectively, and they 

are both affected by the MC matrix H. A well known result in free-net adjustment 

theory dictates that the inner constraints yield the best accuracy for the estimated 

positions in the sense that they minimize the trace of the first CV matrix in (46); 

see, e.g. Blaha (1982). Indeed, in this case (i.e. =Η Ε ) the reflexive generalized 

inverse − −

� ��  becomes equal to the pseudoinverse +
�  which is known to have 

the smallest trace among all the symmetric reflexive generalized inverses of the 

NEQs matrix (Koch 1999, p. 62). 

On the other hand, the trace minimization of the matrix 
x̂

Σ  represents a zero-order 
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network optimization task which has not been unveiled in the geodetic literature (at 

least to the author’s knowledge). The corresponding optimal −

�  and its associated 

MC matrix H will provide the most stable alignment of the free-net solution with 

an external frame that is characterized by an a priori CV matrix prior
x

Σ . The solu-

tion of such a problem does not always lead to the classic inner constraints 

( =Η Ε ) and its detailed treatment lies beyond the scope of the present paper. 

 

 

6. Conclusions 

 

The influence of the MCs on the reference frame stability in a free-net solution has 

been investigated in this paper. Our study considered the distortion effect due to a 

perturbation of the constrained datum functionals  

ext

o
( )= −c H x x  by analyzing its 

propagation on the non-estimable and the estimable components of the adjusted 

network. The main findings along with some brief final remarks can be summa-

rized as follows. 

- The matrix T 1( )−HE  plays a crucial role for the reference frame stability in a 

free-net solution, and it controls the impact of each MC to the (non-estimable) 

frame parameters of the adjusted network. This is a fundamental matrix which 

can be associated with alternative datum implementation strategies within the 

same physical network, but it could be also used for comparing the TRF stabil-

ity from different network configurations with varying physical locations of 

their terrestrial stations.  

- A ‘problematic’ TRF stability matrix tends to amplify any external perturba-

tion of the MC vector and also alias the positioning errors of the reference sta-

tions into different frame parameters. 

- Any errors that are present in the a priori positions of the reference stations 

cause a nonlinear distortion on the estimable characteristics of a free-net solu-

tion, and thus they affect the internal geometry of the minimum-constrained 

network (except for the case of a translation-only datum deficient network). 

The linearized LS framework which is used for the inversion of nonlinear rank-

deficient models is ‘blind’ to this type of distortion, whose practical signifi-

cance in geodetic applications remains to be investigated. 

Based on the last of the previous findings, it is concluded that the datum choice 

problem may interfere with the determination of the geometrical form of a mini-

mum-constrained network under a nonlinear observation model – the notion of a 

truly distortionless free-net solution requires therefore additional theoretical steps 

to be rigorously defined. 
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