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1. Introduction 

The dominating theory for estimation of unknown parameters from observations 

corrupted by random noise is the linear theory, which is linear in two respects: 

(a) The deterministic mathematical model connecting unknown parameters with 

the observables, i.e., the observed parameters, is linear. 

(b) The provided estimates are linear functions of the observations. 

Here we will elaborate on the case where the first of the assumptions is violated, 

which is the usual case in physical applications, where linear mathematical models 

are rather the exception.  

We will also compare two different traditions where the linear model is applied: 

The first is the classical one of applications in physical sciences, in particular as-

tronomy and geodesy. It starts with the least squares method of Gauss and Legen-

dre and it culminates in the statistical justification of the choice of weight matrix as 

a scalar multiple of the inverse of the error covariance matrix. According to the 

celebrated Gauss-Markov theorem with this choice the least squares solution pro-

vides Best Linear Uniformly Unbiased Estimates (BLUUE or simply BLUE) for all 

linear functions of the parameters, which are estimable, i.e. functions of the ob-

servables only. 

The linear model =y Ax , that relates observables y  with other unknown parame-

ters x , is usually the result of linearization, and it is an approximation to a nonlin-

ear model ( )=y f x , while observations = +b y e  are corrupted by noise (errors) e  

which are considered random variables with zero mean and known covariance ma-

trix (up to a scalar).  

The second tradition has been developed in applications within the human sciences, 

where the processes involved are too complicated to be expressed by simple physi-

cal laws and mathematical relations with unquestionable validity. Instead, a set of 

attributes y , 
1
x , 

2
x , …, 

m
x  is observed over a set of n  different entities to pro-

duce values 
i
y , 

1i
X , 

2i
X , …, 

im
X , 1,2,...,i n= . If a close to linear relation holds 

between these values a model of the form 
1 1 2 2

...

i i i mi m i
y X X X eβ β β= + + + +  is 
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used, where the “error” term 
i
e  does not express imperfections in the measuring 

process but rather the inability of the linear model to absolutely express the relation 

between the 1m +  attributes. In matrix form, the “regression model” = +y Xβ e  

has the same form as the “observation equations” model = +b Ax e  of the physical 

sciences, but they are based on quite different grounds.  

Nonlinear models ( )= +b f x e  appear in both physical sciences, by avoiding the 

linearization step as, as well as in human sciences when the linear relation produces 

large discrepancies 
i
e . Since the formal model in its algebraic form and probabilis-

tic properties is the same in both situations, the problems of estimation with 

nonlinear models are pretty much the same though with different interpretations. 

We will discuss these problems from the point of view of the physical sciences and 

in particular that of geodesy and surveying, which have significantly contributed to 

the development of the linear model theory. 

Before doing so, it is worthwhile to mention a particular nonlinear model, which 

emerged in the regression framework when the error 
i
e  is interpreted not as an 

overall discrepancy but rather as a result of “observation imperfection”. They are 

not though of the same nature as in physical sciences where errors are attributed to 

the inadequacies of the measuring devices and processes (though some contribution 

from modelling errors always exist). In such a case it is recognized that the ob-

served values 
ik

X  also contain observation errors, so that 
ik ik ik

X X E= + , in matrix 

form = +X X E , where 
ik

E  are the errors and 
ik

X  their error-free counterparts. 

This is the so called Errors-In-Variables (EIV) model which gave rise to the “total 

least squares” approach, where not only the errors e  of y  but also the errors E  of 

X  are minimized. The nonlinearity in the model = +y Xβ e , = +X X E  is with 

respect to both unknown parameter X  and β , although the model is linear with 

respect to each set separately. The clarity of the model is usually obscured by the 

elimination of the implicit deterministic unknown parameters X , by writing the 

EIV model in the form ( )= − +y X E β e . Setting =y Xβ , the model is in fact a 

linear (Gauss-Markov) model = +y y e , = +X X E , subject to the nonlinear con-

straints =y Xβ . From our point of view, the Gauss-Markov linear model with 

nonlinear constraints is the basic generic model for the treatment of observations in 

order to estimate unknown parameters. 

 

 

2. Alternative models in the physical sciences 

Returning to the physical sciences, when we perform a redundant number of n  

observations b , the observables y  are the fundamental set of unknown parameters 

although they may not appear explicitly in the model. In the presence of zero-mean 

random errors e  the basic linear model is = +b y e . Nevertheless what we “ob-
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serve”, in a more general sense of the word, is not the observables themselves but 

rather a natural “system” in the sense of an isolated part of the whole nature. In 

such a system, the existing interactions with the rest of the physical reality are ig-

nored with the use of simple mathematical models based on an abstract simplified 

view of the physical word. Since reality cannot be circumvented or bypassed, na-

ture hits back through discrepancies between observations and observables, to 

which we attribute the character of observation errors. Any system can be com-

pletely described by means of an intrinsic number of parameters r , which we will 

call the parametric rank of the system. Thus, the n  observables are not independent 

but they must satisfy a number of s n r= −  conditions. The vector of the observ-

ables y  belongs to the n -dimensional space of reals n

R . The s  conditions restrict 

the admissible values to an r -dimensional subset M  of n

R , which we will call the 

manifold of the observables. We use the mathematical term “manifold” since in the 

general case this subspace will be a curved one (in the case of nonlinear models), 

rather than a flat one (as in the case of linear models). The most simple way (and in 

many sciences the only one in use) to describe the manifold M  is as the image of 

r  unknown parameters x  under a nonlinear mapping ( )=y f x  called the “obser-

vation equations” model. In this case, the total number of unknown parameters 

( y , x ) rises to n r+  and the ( )s n r r n= + − =  independent conditions ( )=y f x  

restrict y  to lie to an r –dimensional manifold M . In geodesy M  has been also 

described in different ways. The most traditional one is through the so-called 

s n r= −  “condition equations” ( ) =g y 0 , without the use of any parameters other 

than the observables. An in-between description is that of the “mixed equations” or 

“condition equations with unknowns”, where a set of additional m  unknown pa-

rameters x  is used, which interact with the observables y  through k  nonlinear 

relations ( , ) =h x y 0 . The number of unknowns in this case is n m+  and the k  

conditions reduce them to n m k r+ − = , so that the appropriate number of inde-

pendent relations ( , ) =h x y 0  must be k n m r= + − . Not all possibilities are yet 

exhausted. Two (at least) more descriptions arise by imposing d  conditions 

( ) =c x 0  on the m  parameters x . Thus we have the observation equations with 

constraints, namely ( )=y f x , ( ) =c x 0 , i.e. n d+  conditions which reduce the 

n m+  unknowns into ( ) ( )n m n d r+ − + =  ones and thus d m r= −  must hold. In 

the mixed equations with constraints, ( , ) =h x y 0 , ( ) =c x 0 , n d+  conditions re-

duce the n m+  unknowns to ( ) ( )n m k d r+ − + =  ones and thus k d n m r+ = + −  

must hold. 

It is customary to “eliminate” the observables and obtain models, which implement 

the observations and their errors, such as the “observation equations” ( )= +b f x e , 

the “condition equations” ( )− =g b v 0  and the “condition equations with un-

knowns” ( , )− =h x b v 0 . The last ones in their linearized form have been intro-

duced by the famous German geodesist F. R. Helmert (1907) and are widely 
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known in geodesy as the Gauss-Helmert (linear) model, a name suggesting a gen-

eralization of the linear Gauss-Markov model. The essential here is not how the r -

dimensional observables manifold M  is described, but rather how to select a point 

ˆ M∈y  on this manifold, which serves as an estimate of the unknown observ-

ables y . Since errors ( = −e b y ) are small a good idea is to obtain a ŷ  close to the 

observations b , by minimizing the distance || || || || T
− = =b y e e Pe  among all pos-

sible observables M∈y . In other words, the error estimates are minimized in 

length and this is the basis of the least squares method, equivalently based on the 

minimization of the square distance 2|| || minT
= =e e Pe . The remaining question is 

how to choose the positive-definite weight matrix P , and the answer is the pro-

vided in the linear model case, where M  is a linear manifold, by the Gauss-

Markov theorem. 

 

 

3. The problem of the justification of the least squares solution for nonlin-
ear models 

Is it possible to extend the Gauss-Markov theorem to the nonlinear case? Unfortu-

nately, the answer is negative! Linearity is an essential component of the Gauss-

Markov model. In order to see why this is so, we will restrict ourselves to the esti-

mation of the observables; once they are known, any other parameter of interest 

either can be computed from them, or they cannot be computed at all. This is the 

difference between estimable and non-estimable parameters, or more correctly be-

tween determinable and non-determinable ones. Let us see what the concept of 

uniform unbiased tells us. By modelling the errors e  as random parameters, we 

accept that each time we repeat the observations experiment an error value ( )ωe  

corresponding to the experiment ω  is added to the fixed unknown deterministic 

observables y  to produce a value of the observations ( ) ( )ω ω= +b y e . The least 

squares solution assigns to ( )ωb  its closest element ˆ ( )ωy  from M . In the linear 

case, this assignment is simply a projection on the linear manifold M . Under infi-

nite conceivable repetitions of the experiment ω∈Ω  (Ω = set of all possible ex-

periments) we have a “cloud” of observations 
1

( )ωb , 
2

( )ωb ,…, which has a “cen-

ter” (mean or expected value in statistical terminology) { ( )} { ( )}E Eb y eω ω= + =  

{ ( )}Ey e ω= + , which is the sum of the unknown true values of the observables 

and the “center” { ( )}E ωe  of the errors. As a part of our stochastic model, we have 

assumed that the errors have zero mean, { ( )}E ω =e 0  and hence of the errors 

{ ( )}E ω =b y , i.e. the center (mean or expected value) of the observations is the 

true observables y . For the linear case, the projection ˆ( ) ( )ω ω→b y  preserves the 

center of the observations cloud ( )ωb  and thus the center of the observable esti-

mates cloud ˆ ( )ωy  (a cloud within M ) is simply y . In statistical terminology, the 

estimates ˆ ( )ωy  are unbiased, i.e., their mean (expected) value equals the unknown 
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observables ˆ{ ( )}E ω =y y . In simple words, if we repeat the experiment ω  (under 

the same conditions – whatever that may mean) infinite times and calculate the 

mean of the infinite obtained estimates ˆ ( )ωy , we will obtain the true value! Since 

infinite repetitions are impossible, in practice we are simply assured that a large 

number of repetitions provides a close to truth estimate, the larger the better. What 

is the value of this “unbiasedness” criterion when we hardly ever repeat the ex-

periment a second time (one is costly enough already)? Well it simply says that 

when we put our hand in some bucket of estimates to draw out a single one, it is 

better to pick up a bucket where the estimates have the true value as mean. Of 

course unbiasedness is not a panacea and biased estimates have been proposed, 

when by allowing our cloud of estimates to be somewhat off-center we arrive to 

more dense clouds, where the chance to get closer to the truth increases. In statisti-

cal terms we give up unbiasedness for each observable 
i
y  ( ˆ{ }

i i
E y y≠ ) for the sake 

of decreasing its mean square error 2ˆ{( ) }
i i

E y y− . 

In the nonlinear case, the least squares solution projects each observation point 

( )ωb  into a corresponding point ˆ ( )ωy  on the nonlinear manifold. Since the mani-

fold is curved, the center y  of the original cloud does not coincide with the center 

ˆ{ ( )}E ωy  of the projected cloud! In the general case ˆ{ ( )}E ωy  does not even be-

longs to M , where y  lies. To visualize this, think of M  as a sphere or a circle. 

The missing link for imposing unbiasedness in the nonlinear case is a new “intrin-

sic” definition of the mean, such that the mean of points on a nonlinear manifold 

remains always on the manifold. 

There are two great advantages in the use of the Gauss-Markov theorem for the 

justification of the use of the weight matrix in linear models. The first is that the 

minimized target function for any linear function T
q = a y  of the observables y is 

the mean square error 2ˆ{( ) } minE q q− = , which suggest an intuitively attractive 

best concentration of the estimates ˆ( )q ω  for the various possible observation ex-

periments ω  around the unknown true value q . The second is that no knowledge 

of the complete probability density function of the observation errors is needed. In 

this respect, BLUE estimation is a “second order” theory requiring knowledge only 

of the first and second order statistics (means and covariances). 

There are two ways for introducing statistical optimality in the case of nonlinear 

models. The first is to resort to the Bayesian approach where the unknown parame-

ters are also consider as random variables with a known “prior” probability distri-

bution. We will not examine further this approach here and the reader may consult 

Dermanis and Sanso (1995). The second is to resort to the maximum likelihood 

principle (see e.g. Seber and Wild, 2003). The likelihood is in our case the joint 

probability density function of the observations ( )p b , defined in such a way that 

for any subset n

S R⊂  , the probability of b  to belong to S  is given by the integral 
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Pr( ) ( )
S

S p d∈ = ∫b b b . When the probability density function depends on some 

unknown parameters θ  (in our case x  and y ) then the likelihood function is the 

probability density function for fixed parameter values ( | )L b θ . The maximum 

likelihood estimation criterion assigns to the unknown θ  the estimates ˆθ , which 

maximize the likelihood function ˆ( | ) max ( | )L L=

θ

b θ b θ . If the probability density 

is having a unique maximum then for the given outcomes ( )ωb  we assign as 

maximum likelihood estimates the values ˆ ( )ωθ  for which the value of ( ( ) | )L ωb θ  

becomes maximal. Obviously, such an optimality criterion may well fit the statisti-

cian’s way of thinking (and many times it is considered the best possible one!) but 

fails to gain the attraction of the applied scientist (at least the one who is not con-

suming statistical recipes unquestionably). It falls sort when facing the intuitive 

charm of the minimum mean square criterion and furthermore it necessitates 

knowledge of the observation probability distribution. Statistical theory is domi-

nated by the use of the Gaussian or normal distribution, merely because of its 

mathematical convenience in producing easy to apply results. (By the way, the 

same is true for the use of the least squares principle instead of, e.g. 

|| || minT p
=e Pe  with positive 2p ≠ , e.g. 1p = .) In our case, assuming that the 

observations = +b y e  have mean { }E =b y , covariance matrix 

{( )( ) } { }T T
E E= − − = =

b e
C b y b y ee C  and follow the normal distribution, their 

probability density (likelihood) function is given by 

 

(1) 
1 11 1

( ) ( )
1/ 2 1/ 22 2( | ) [(2 ) det ] [(2 ) det ]

T T

n n

L e eπ π

− −

− − − −

− −

= =

b e
b y C b y e C e

b e
b y C C . 

 

Since maximum ( | )L b y  is equivalent to maximum  
11 1

2 2
ln ( | ) ln([(2 ) det ]

n T

L π
−

= − −
e e

b y C e C e  and the first term is constant, we may 

equivalently maximize 1T −

−

e
e C e , i.e. minimize 1

min
T −

=
e

e C e . However, this is a 

least squares principle with weight matrix 1−
=

e
P C  or any positive scalar multiple, 

e.g. 1−
=

e
P Q  when 2

σ=
e e

C Q  with 2
σ  unknown. Therefore, the (less attractive) 

maximum likelihood estimation principle leads to the same choice of weight matrix 

for nonlinear models as the Gauss-Markov theorem for linear models, but only 

when the additional assumption of Gaussian error distribution is true. Most geode-

sists have been so much brainwashed by reading statistical and other relevant texts 

that they have developed a firm belief that errors follow the Gaussian distribution. 

The practicing surveyor however, who has spent considerable time making re-

peated measurements under “the same conditions” knows that reality does not con-

form to such mathematical niceties. In fact, serious doubts about the reality of the 

Gaussian or normal distribution are already spread in the scientific community. 
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Here are some famous quotes:  

 

"Normality is a myth; there never was, and never will be, a normal distri-

bution."  

Geary, R. C. (1947). ‘Testing for normality’, Biometrika, 34:209–242. 

 

“Everybody believes in the exponential law of errors [i.e., the Normal dis-

tribution]: the experimenters, because they think it can be proved by 

mathematics; and the mathematicians, because they believe it has been es-

tablished by observation.”  

Whittaker, E. T. and Robinson, G. (1967). "Normal Frequency Distribu-

tion." Ch. 8 in The Calculus of Observations: A Treatise on Numerical 

Mathematics, 4th Ed. New York: Dover, pp. 164-208, 1967. p. 179. 

 

“...the statistician knows...that in nature there never was a normal distribu-

tion, there never was a straight line, yet with normal and linear assump-

tions, known to be false, he can often derive results which match, to a use-

ful approximation, those found in the real world.” 

Box, George E. P. (1976). Science and Statistics. Journal of the Ameri-

can Statistical Association, Vol. 71, pages 791-799. 

 

Recall that statistical inference (hypothesis testing) also requires knowledge of the 

probability distribution of the errors and relies greatly on the Gaussian distribution 

assumption. 

We may still attempt to profit from the optimality of the BLUE estimates in the 

linear case. The least squares nonlinear estimate of the observables ŷ  is not uni-

formly unbiased or best (does not have minimum mean square error) among other 

candidate estimates belonging to the curved manifold of the observables M , but 

has these optimality properties among estimates belonging to the linear manifold 

ˆ

( )T M
y

, which is tangent to M  at the point ˆ M∈y . 
ˆ

( )T M
y

 is a very good ap-

proximation to M  within a small neighborhood of ŷ . One problem arises from the 

fact that the routinely used probability distributions for the errors e , such as the 

Gaussian distribution, allow for outcomes in the domain 
i
e−∞ < < +∞ . Thus, very 

large values of outcomes ( )ωe  are highly improbable but possible, thus leading to 

observations ( )ωb  and estimates ˆ ( )ωy , which are far from the true value y . How-

ever, this is a problem of the mathematical model and not of physical reality. Every 

geodesist is ready to bet his head over the fact that the measurement error does not 

exceed some relatively large value. Thus to comply with reality one should use 

instead bounded error distributions, in which case all possible estimates ˆ ( )ωy  lie in 
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a rather small neighborhood of the true value. Whether M  can be sufficiently ap-

proximated by 
ˆ

( )T M
y

 or even ( )T M
y

 depends mostly on the magnitude of the 

local mean curvature of M . Replacing 
ˆ

( )T M
y

 with ( )T M
y

 as a local approxima-

tion to M , bypasses the problem that 
ˆ

( )T M
y

 depends on the random estimate ŷ  

and is thus randomly defined. 

 

 

4. Nonlinear normal equations and iterative solutions 

Without a nonlinear analog of the Gauss-Markov theorem one has to refrain to the 

least squares solution, either by just imitating the linear model case, or by resorting 

to the maximum likelihood principle. Thus, the weight matrix is still taken to be the 

inverse of the covariance matrix of the errors (apart from a positive linear factor, 

which does not affect the values of the estimates). The application of the least 

squares principle leads to a set of “nonlinear normal equations” whose solution 

provides the least-squares parameter estimates. Various algorithms may imple-

mented for solving these nonlinear equations. We will give as an example the 

nonlinear normal equations for the Gauss-Helmert model or, from our point of 

view, the trivial linear model = +b y e  subject to nonlinear constraints ( , ) =h y x 0 . 

The minimization of ( ) ( )T T
= − −e Pe b y P b y  subject to ( , ) =h y x 0  is based on the 

formulation of the Lagrangean function ( ) ( ) 2 ( , )T T
Φ = − − −b y P b y k h y x  and the 

vanishing of its derivatives with respect to y , x  and the Lagrange multipliers k .  

With 
∂

=
∂

h
A

x
 , 

∂
=
∂

h
B

y
 the vanishing of the derivatives of the Lagrangean Φ  with 

respect to y , x  and k  leads to the system of nonlinear normal equations 

 

(2a) 1 ˆˆ ˆ ˆ( , )T−

= −y b P B y x k  

 

(2b) ˆˆ ˆ( , )T =A y x k 0  

 

(2c) ˆ ˆ( , ) =h y x 0 . 

Pope’s iteration for the linear Gauss-Markov model with nonlinear constraints. 

In geodetic applications, the same problem is solved in an ad hoc way by lineariza-

tion and iteration using the estimates as new approximate values. Pope (1972) pre-

sented a corrected version of the linearization-iteration approach solving directly 

the above nonlinear normal equations (2) by replacing (2c) with its linear approxi-

mation. If 
0

x , 
0

y  are approximate values to be used in a particular iteration step, 

then replacing ˆ ˆ( , )h y x  with its linear approximation we obtain the iteration scheme 
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(3a) 1
ˆ

ˆ

T
δ δ

−

= −y b P B k  

 

(3b) ˆ
T

=A k 0  
 

(3c) 
0

ˆ ˆ ˆ ˆ( , ) δ δ≈ + + =h y x h A x B y 0  

 

where 
0 0 0

( , )=h h x y , 
0 0

( , )
∂

=
∂

h
A x y

x
, 

0 0
( , )

∂
=
∂

h
B x y

y
, 

0
ˆ ˆδ = −x x x , 

0
ˆ ˆδ = −y y y , 

and 
0

δ = −b b y .  

Replacing ˆδ y  from (3a) into (3c) gives 1

0

ˆ

ˆ

T
δ δ

−

+ + − =h B b A x BP B k 0  and 

1 1

0

ˆ ˆ( )δ δ
− −

= + +k M h B b M A x , where 1 T−

=M BP B , which replaced in the (3b) 

and (3a) yields 
 

(4a) 1 1 1

0
ˆ ( ) ( )T T

δ δ
− − −

= − +x A M A A M h B b  

 

(4b) 1 1

0
ˆ ˆ( )T

δ δ δ δ
− −

= − + +y b P B M A x h B b , 

 

(4c) 1 1

0
ˆ ˆ ˆ ˆ( )T

δ δ δ δ
− −

= − = − = + +e b y b y P B M A x h B b . 

 

The estimates 
0

ˆ ˆδ= +x x x , 
0

ˆ ˆδ= +y y y  are then used as approximate values in the 

next iteration step.  

 

Pitfalls in iteration with the Gauss-Helmert model. 

Let us compare the above iteration scheme with the usual geodetic (incorrect) lin-

earization and iteration procedure. The Gauss-Helmert model of the form 

( , ) ( , )= − =h x y h x b e 0 , is linearized with respect to 
0

x  and 
0

0=e , as 

 

(5) 
0

( , ) ( , ) δ δ− = + − = + − =h x b e h x b A x Be w A x Be 0  

 

where 
0

( , )
∂

=
∂

h
A x b

x
, 

0
( , )

∂
=
∂

h
B x b

y
 and 

0
( , )=w h x b  are the model misclosures. 

The minimization of T
e Pe  subject to ˆδ+ − =w A x Be 0  involves the Lagrangean 

2 ( ).
T T

δΦ = − + −e Pe k w A x Be  Setting the derivatives of Φ  with respect to e , 

δx  and k  gives the solution system 

(6a) 
1

ˆ
ˆ

T−

= −e P B k , 
 

(6b) ˆ
T

=A k 0 , 
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(6c) ˆˆδ+ − =w A x Be 0 . 

 

Setting 1 T−

=M BP B  and replacing ê  from (6a) to (6c) gives 1ˆ ˆ( )δ
−

= − +k M A x w , 

which replaced in (6b) and (6a) leads to the estimates 
 

(7a) 1 1 1ˆ ( )T T
δ

− − −

= −x A M A A M w , ( 1 T−

=M BP B ), 

 

(7b) 1 1ˆ ˆ( )T
δ

− −

= +e P B M A x w , 1 1ˆˆ ˆ( )T
δ

− −

= − = − +y b e b P B M A x w . 

 

The estimates 
0

ˆ ˆδ= +x x x , are then used as approximate values 
0

x  in the next it-

eration step. The failure to update the second part b  of the Taylor point in the lin-

earization is the main pitfall pointed out by Pope (1972). The other differences 

between the first approach (nonlinear least squares and linear approximation of the 

nonlinear normal equations) from the second (linearization and linear least squares) 

are  

(a) the difference between the matrices A , B  (evaluated at 
0

x , 
0

y ) and 

A , B  (evaluated at 
0

x , b ) and  

(b) the appearance of the misclosure w  in place of the term 
0

δ+h B b . 

With respect to (a) we note that the differences −A A , −B B  are very small and 

when multiplied with the small terms ˆδ x  and ê  or ˆδ y  they produce second order 

negligible terms, e.g. ˆ ˆ ˆ ˆ( )δ δ δ δ= + − ≈A x A x A A x A x . With respect to (b) we note 

that indeed in linear approximation 
 

(8) 
0 0 0 0 0 0 0

( , ) ( , ) ( , )( ) δ
∂

= ≈ + − = +
∂

h
w h x b h x y x y b y h B b

y
. 

 

Pope’s iteration applied to the Gauss-Helmert model. 

A correct version for an iterative solution of the Gauss-Helmert model can be pro-

duced by updating also the error estimates, linearizing ( , )− =h x b e 0  with respect 

to 
0

x  and 
0
e , as 

(9) 
0 0 0 0 0

( , ) ( , ) ( )δ δ− = − + − − = + + − =h x b e h x b e A x B e e h Be A x Be 0  

 

where 
0 0

( , )
∂

= −
∂

h
A x b e

x
, 

0 0
( , )

∂
= − −

∂

h
B x b e

e
 and 

0 0 0
( , )= −h h x b e .  

The minimization of T
e Pe  subject to 

0 0
δ+ + − =h Be A x Be 0  involves the La-

grangean 
0 0

2 ( )
T T

δΦ = − + + −e Pe k h Be A x Be . Setting the derivatives of Φ  with 

respect to e , δx  and k  gives the solution system 
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(10a) 
1

ˆ
ˆ

T−

= −e P B k , 
 

(10b) ˆ
T

=A k 0 , 
 

(10c) 
0 0

ˆˆδ+ + − =h Be A x Be 0 . 
 

Setting 1 T−

=M BP B  and replacing ê  from (10a) into (10c) gives 
1

0 0

ˆ ˆ( )δ
−

= − + +k M h Be A x , which replaced in (10b) and (10a) leads to the esti-

mates 
 

(11a) 1 1 1

0 0 0
ˆ ( ) ( )T T− − −

= − +x x A M A A M h Be  

 

(11b) 1 1

0 0
ˆ ˆ( )T

δ
− −

= + +e P B M h Be A x , 

 

(11c) 1 1

0 0
ˆˆ ˆ( )T

δ
− −

= − = − + +y b e b P B M h Be A x . 

 

The estimates 
0

ˆ ˆδ= +x x x , ê  are then used as approximate values 
0

x  and 
0
e  in the 

next iteration step. 

A problem with the Gauss-Helmert iteration without explicit use of the observables 

y  is the fact that as the coefficient matrices A  and B  are evaluated using the ran-

dom observations b  they are themselves random variables and an Errors-In-

Variables (EIV) type model should be used instead. A similar problem appears to 

be present in the first step of Pope’s correct iteration scheme, where initial ap-

proximate values 
0

x , 
0

y  are needed. Pope (1972) suggests using 
0
=y b  in the 

first, but this will create also random coefficient matrices. In addition 
0

x  must 

come either from some use of the observations b , or from (random) estimates 

based on a previous data analysis and is therefore random. Furthermore, in the next 

iteration steps the approximate values are set equal to the random estimates of the 

previous step and are therefore random. However, this type of skepticism is easy to 

overcome. One must see the iteration process as a procedure leading to the final 

estimate ˆ M∈y , which is closer to the observations b  in the least squares sense. 

As far as the iteration converges, the departing point (approximate values at the 

first step) and the intermediate steps are of no direct importance. The iteration must 

be seen simply as a mathematical device for solving the nonlinear normal equations 

and not as a repeated application of a linear estimation process. As far as the same 

final value ŷ  is obtained (allowing for insignificant variations due to different nu-

merical errors), there exist no problem arising from the possible stochastic interpre-

tation of the iteration steps. Recall that the same answer can be obtained by other 

iterative numerical methods such as the Gauss-Newton method, the method of 

steepest descent and the Levenberg-Marquardt method which a hybrid method be-

tween the previous two. 
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A final problem is the estimation of the covariance matrices of the parameters. In 

Pope’s iteration, the covariance matrices resulting from the linear estimation model 

of the final iteration step are used as a good approximation. However the mapping 

from the observations b  to the estimates x̂ , ŷ , as the solution of a system of 

nonlinear equations, is itself a nonlinear mapping. Therefore a nonlinear type of 

covariance propagation is needed which can only be realized by Monte-Carlo 

simulation methods. The problem again is that these methods require knowledge of 

the probability distribution of the observations, i.e. essentially of the observation 

errors. 

 

 

5. Different solution algorithm generation for non-linear models.  
 The EIV example. 

Apart from the use of different methods for solving the nonlinear normal equations 

(2), different algorithms may arise from different formulation of the normal equa-

tions and the order of elimination of all or some of the three sets of unknowns: un-

known parameters x̂ , observables ŷ  or errors ê  and Lagrange multipliers ˆk . 

Strictly speaking, the term normal equations should be used for those remaining 

after all Lagrange multipliers are eliminated. For example elimination of ˆk  will 

give the rather difficult to solve reduced set 

 

(12) 
1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )( )T T
−

−⎡ ⎤ − =⎣ ⎦A x y B x y P B x y B x y b y 0 , ˆ ˆ( , ) =h x y 0 . 

 

However, it is sometimes convenient to retain some of the Lagrange multipliers as 

part of the unknowns to be determined. The Errors-In Variables (EIV) model is a 

good example of how different algorithms may arise. We will apply the two itera-

tion algorithms based on the linearization of either ( , ) =h x y 0  or ( , )− =h x b e 0 , as 

well as Total Least Squares (TLS) algorithms based on the nonlinear equations 

( , )− =h x b e 0  without linearization.  

We find convenient to depart from our standard convention of using bold letters for 

matrices, only for the EIV model. This will greatly help in distinguish the general 

case (in bold) from its application to the EIV model.  

In the EIV model ( )
A y

y A E x e= − + , where we set 
A A
e vecE= , a vecA= , the ob-

servables are 
y

y y e= −  and ( )
A A A

a vecA vec A E vecA vecE a e≡ = − = − ≡ − , the 

observations are y  and a vecA= , and the model is ( )
A y

h y A E x e= − − − =  

0y Ax= − = . We may apply directly the formulated nonlinear normal equations as 

well as the iterative solutions by simply replacing 
 

(13) ( , )→h x y  ( , , ) ( )T

n
h x y a y Ax y x I a= − = − ⊗  
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(14) ( , )− →h x b e  

 ( , , ) ( ) ( )T

y A A y n A yh x y e A E y A E x e y Ax x I e e→ − − = − − − = − + ⊗ −  

 

(15) 
y

a

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
b , 

y

a

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
y , 

y

A

e

e

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
e , 

 

(16a) ( , )
h

A
x

∂
→ = −

∂
A x y , 

 

(16b) ( , ) ( )T

n n

h h h
I x I

y y a

a

⎡ ⎤∂ ∂ ∂
⎡ ⎤→ = = − ⊗⎢ ⎥ ⎣ ⎦∂ ∂⎡ ⎤ ⎣ ⎦∂ ⎢ ⎥

⎣ ⎦

B x y  

 

(17a) ( , ) ( )
A

h
A E

x

∂
− → = − −

∂
A x b e , 

 

(17b) ( , ) ( )T

n n

y y A

A

h h h
I x I

e e e

e

⎡ ⎤∂ ∂ ∂
⎡ ⎤− → − = − = − ⊗⎢ ⎥ ⎣ ⎦∂ ∂⎡ ⎤ ⎢ ⎥⎣ ⎦∂ ⎢ ⎥

⎣ ⎦

B x b e  

 

Iteration of linear Gauss-Markov model with nonlinear constraints. 

In this particular approach the matrices involved are 
 

(18) 
0 0 0

( , ) A→ −A x y , 
0 0 0

( , ) ( )T

n n
I x I⎡ ⎤→ − ⊗⎣ ⎦B x y , 

1
0

0

y

A

Q

Q

−

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
P  

 

(19) 
1

0 0 0
( ) ( )T T

y n A nM Q x I Q x I
−

= → = + ⊗ ⊗M BP B  

 

(20) 
0 0 0 0 0 0 0

( )T

n
y A x y x I a→ − = − ⊗h  

(21) 
0

0 0 0 0 0

0

( ) ( ) ( )( )T T

n n n

y y
I x I y y x I a a

a a
δ

−⎡ ⎤
⎡ ⎤= − → − ⊗ = − − ⊗ −⎢ ⎥⎣ ⎦ −⎣ ⎦

B b B b y  

 

(22) 
0 0 0 0 0 0 0 0

( ) ( )( )T T

n n
y x I a y y x I a a y Axδ+ → − ⊗ + − − ⊗ − = −h B b  

 

(23) 1 1 1 1 1 1

0 0 0 0 0 0 0
ˆ ˆ( ) ( ) ( ) ( )T T T T

x A M A A M y Axδ δ δ
− − − − − −

= − + → = −x A M A A M h B b  
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(24) 1 1

0
ˆ ˆ( )T

δ δ δ δ
− −

= − + + →y b P B M A x h B b  

 
0 0 1

0 0 0

0 00

ˆ
ˆ( )

ˆ ( )

y

A n

y y y y Q
M A x y Ax

a a Q x Ia a
δ

−

−⎡ ⎤ − −⎡ ⎤ ⎡ ⎤
→ = + − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⊗− ⎣ ⎦ ⎣ ⎦⎣ ⎦

, 

 

(25) 

1

0 0 0 0

1

0 0 0 0 0

ˆˆ ˆ[ ( ) ]
ˆ ˆ

ˆˆ ˆ( ) [ ( ) ]

y y

A A n

y ye Q M y A x A A x

e Q x I M y A x A A xa a

−

−

−⎡ ⎤ ⎡ ⎤− + −⎡ ⎤
= − → = =⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⊗ − + −−⎣ ⎦ ⎣ ⎦⎣ ⎦
e b y . 

 

Therefore, the iteration solution is given by 

 

(26a) 1 1 1

0 0 0 0 0 0
ˆ ( ) ( )T T
x x A M A A M y Ax

− − −

= + − , 

 

(26b) 
1

0 0 0 0
ˆ ˆ[ ( ) ]

y
y y Q M y A x A A x

−

= − − + − , 

 

(26c) 
1

0 0 0 0
ˆ ˆ ˆ[ ( ) ]
y y
e y y Q M y A x A A x

−

= − = − + − , 

 

(26d) 1

0 0 0 0 0
ˆ ˆ( ) [ ( ) ]

A n
a a Q x I M y A x A A x

−

= + ⊗ − + − , 

 

(26e) 1

0 0 0 0 0
ˆˆ ˆ( ) [ ( ) ]

A A n
e a a Q x I M y A x A A x

−

= − = − ⊗ − + − . 

 

Iteration of nonlinear Gauss-Helmert model. 

In this particular approach the matrices involved are 

 

(27a) 0

0 0
( , ) ( )

A
A E= − → − −A A x b e , 

 

(27b) 
0 0 0

( , ) ( )T

n n
I x I⎡ ⎤= − → − ⊗⎣ ⎦B x b e ,  

 

(28) 
0 0

0 0 0 0
( , ) ( )

A y
y A E x e= − → − − −h h x b e , 

0 0

0 0y A
e E x→ −Be  

 

(29) 
0 0 0

y Ax+ → −h Be  

 

(30) 
1

0 0 0
( ) ( )T T

y n A nM Q x I Q x I
−

= → = + ⊗ ⊗M BP B  

(31) 1 1 1

0 0
ˆ ( ) ( )T T

δ
− − −

= − + →x A M A A M h Be  

 

1
0 1 0 0 1

0 0 0
ˆ ( ) ( ) ( ) ( )T T

A A A
x A E M A E A E M y Axδ

−

− −⎡ ⎤→ = − − − −⎣ ⎦  
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(32) 1 1

0 0
ˆ ˆ( )T

δ
− −

= + + →e P B M h Be A x  

 

1

00

0 01

0 0

ˆ
ˆ[ ( )( )]

ˆ ( )

y y

A

A A n

e Q M
y Ax A E x x

e Q x I M

−

−

⎡ ⎤⎡ ⎤
→ = − − − −⎢ ⎥⎢ ⎥

− ⊗⎣ ⎦ ⎣ ⎦
. 

 

Therefore, the iteration solution is given by 
 

(33a) 
1

0 1 0 0 1

0 0 0 0
ˆ ( ) ( ) ( ) ( )T T

A A A
x x A E M A E A E M y Ax

−

− −⎡ ⎤= + − − − −⎣ ⎦  

 

(33b) 
1 0 0

0 0
ˆ ˆ[ ( ) ]
y y A A
e Q M y E x A E x

−

= − − − , 

 

(33c) 1 0 0

0 0 0
ˆ ˆ( ) [ ( ) ]
A A n A A
e Q x I M y E x A E x

−

= − ⊗ − − − . 

 

Formulation of nonlinear normal equations and iterative solutions. 

The general normal equations for the Gauss-Helmert model follow by simply re-

placing ˆˆ = −y b e  in equations (2) 

 

(34a) 1 ˆˆ ˆˆ( , )T−

= − −e P B x b e k  

 

(34b) ˆˆˆ( , )T− =A x b e k 0  

 

(34c) ˆˆ( , )− =h x b e 0  

 

For the particular case of the EIV model the matrices involved are 
 

(35) ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( )T

A y n A yy A E x e y Ax x I e e− → − − − = − + ⊗ −h x b e  

 

(36) 
y

a

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
b , 

y

a

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
y , 

y

A

e

e

⎡ ⎤
→ ⎢ ⎥

⎣ ⎦
e , 

 

(37) ˆˆˆ( , ) ( )
A

A E− → − −A x b e , ˆˆ ˆ( , ) ( )T

n n
I x I⎡ ⎤− → − ⊗⎣ ⎦B x b e  

 

(38) 1
ˆ 0 ˆˆˆ ˆˆ( , )

ˆˆ ( )0

ny yT

nA A

Ie Q
k

x Ie Q

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= − − → = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e P B x b e k  

 

(39) ˆˆ ˆˆˆ( , ) ( ) 0T T

A
A E k− = → − − =A x b e k 0  

 

and the primary nonlinear normal equations become 
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(40a) ˆ

ˆ

y y
e Q k= −  

 

(40b) ˆˆ ˆ( )
A A n
e Q x I k= ⊗  

 

(40c) ˆˆ( ) 0T

A
A E k− =  

 

(40d) ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 0T

A y n A yy A E x e y Ax x I e e− − − = − + ⊗ − =  

 

Note that in the iteration solution based on the Gauss-Helmert model, the last rig-

orous equation ˆ ˆ ˆ( ) 0
A y

y A E x e− − − =  has been replaced by its linear approxima-

tion 0 0

0

ˆˆ ˆ( ) ( ) 0
A A A y

y A E x E E x e− − + − − = , after a Taylor expansion around the val-

ues 
0 0

0
( , , )

y A
x e e . The following iterative solutions are therefore superior in this re-

spect. They are based on the possibility to convert a general nonlinear equation 

( ) 0f χ =  in the form ( )χ ϕ χ= , such that the iteration 
1

( )
i i

χ ϕ χ
+
=  converges. In 

the following will describe a single step of such a procedure as 
0

( )χ ϕ χ= . 

Replacing ˆ

ˆ

y y
e Q k= −  from the (40a) and ˆˆ ˆ( )

A A n
e Q x I k= ⊗  from (40b) into (40d) 

we obtain ˆˆ 0y Ax Mk− + =  where ˆ ˆ ˆ( ) ( ) ( )T

y n A nM M x Q x I Q x I= = + ⊗ ⊗  and 

 

(41) 1ˆ ˆ( )k M y Ax
−

= − . 

 

Replacing this value in (40c), we obtain 

 

(42) 1ˆ ˆ( ) ( ) 0T

A
A E M y Ax

−

− − = , 

 

which is the basic equation for obtaining x̂ . In an algorithm proposed by Fang 

(2011) the last equation is replaced by a symmetric counterpart 

 

(43) 1ˆ ˆ ˆˆ ˆ( ) [ ( ) ] 0T

A A A
A E M y A E x E x

−

− − − − = , 

 

which takes the appropriate for iteration form ˆ ˆ( )χ ϕ χ=  

 

(44) 
1

1 1ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( )T T

A A A A
x A E M A E A E M y E x

−

− −⎡ ⎤= − − − −⎣ ⎦ . 

 

Using the estimates of the previous step as approximate values in the right hand 

side of (44) the iteration of the form 
0

ˆ ( )χ ϕ χ=  is given by 
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(45) 
1

0 1 0 0 1 0

0 0 0
ˆ ( ) ( ) ( ) ( )T T

A A A A
x A E M A E A E M y E x

−

− −⎡ ⎤= − − − −⎣ ⎦  

 

where now 
0 0 0 0

( ) ( ) ( )T

y n A nM M x Q x I Q x I= = + ⊗ ⊗ . The obtained value x̂  can be 

used to compute the Lagrange multipliers 1ˆ ˆ ˆ( ) ( )k M x y Ax
−

= −  and hence 

ˆ

ˆ

y y
e Q k= − , ˆˆ ˆ( )

A A n
e Q x I k= ⊗  or directly 

 

(46) 
1ˆ ˆ ˆ( ) ( )

y y
e Q M x y Ax

−

= − − ,  1ˆ ˆ ˆ ˆ( ) ( ) ( )
A A n
e Q x I M x y Ax

−

= ⊗ − . 

 

The obtained estimates x̂ , ˆ

ˆ

A A
e vecE=  provide the approximate values 

0
x , 0

A
E  for 

the next step. 

Equation (44) corresponds to equation (4.22) of Fang (2011), in the special case 

that 
2

0
{ } 0T

A y Ay
E e e Qσ= = , while Fang treats the more general case with 0

Ay
Q ≠ , 

which has little practical interest. Note that (44) also appears as formula (21) in Xu 

et al. (2012). 

A slightly modified algorithm has been presented by Mahboub (2012). We will 

give here a much simpler than the original derivation based on the easy to verify 

property ˆ ˆˆ ˆ( )T T

A m A
E k I k e= ⊗  ( A  is a n m×  matrix). 

Combining this with ˆˆ( ) 0T

A
A E k− = (40c), it follows that ˆ ˆ ˆ( ) 0T T

m A
A k I k e− ⊗ = , 

which with ˆˆ ˆ( )
A A n
e Q x I k= − ⊗  (40b) gives ˆ ˆ ˆˆ( ) ( ) 0T T

m A n
A k I k Q x I k+ ⊗ ⊗ = . 

Replacing in the last equation 
1ˆ ˆ( )k M y Ax

−

= −  (41) we ob-

tain
1ˆ ˆ ˆ[ ( ) ( )] ( ) 0T T

m A n
A I k Q x I M y Ax

−

+ ⊗ ⊗ − = , which solved for the last x̂  

gives 

 

(47) 
1

1 1ˆ ˆˆ ( ) ( )T T

m A n
x A M A I k Q k I M A

−

− −⎡ ⎤= − ⊗ ⊗ ⋅⎣ ⎦  

 

1 1ˆ ˆ( ) ( )T T

m A n
I k Q k I M y A M y

− −⎡ ⎤⋅ ⊗ ⊗ +⎣ ⎦ . 

 

The last equation is identical with equation (24) of Mahboub (2012) which has the 

compact form 
1

1 2 2 1
ˆ ( ) ( )T T
x A R A R A R y A R y

−

= + +  with 
1

1
R M

−

=  and  

1

2

ˆ ˆ( ) ( )T

m A n
R I k Q k I M

−

= ⊗ ⊗ . 

This equation of the form ˆ ˆ( )x xϕ=  gives an iteration scheme of the form 
0

ˆ ( )x xϕ=  

by using approximate values from the previous step on the right side 
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(48) 
1

1 1

0 0 0 0
ˆ ( ) ( )T T

m A n
x A M A I k Q k I M A

−

− −⎡ ⎤= − ⊗ ⊗ ⋅⎣ ⎦  

 

1 1

0 0 0 0
( ) ( )T T

m A n
I k Q k I M b A M y

− −⎡ ⎤⋅ ⊗ ⊗ +⎣ ⎦ , 

 

while 
1ˆ ˆ ˆ( ) ( )k M x y Ax

−

= −  gives together with x̂  the approximate values 
0
k , 

0
x  

to be used in the next iteration step. 

Here we have only sketched the possibility of obtaining different solutions for 

nonlinear models using the EIV model as an example. For a more complete treat-

ment of the EIV model see the review paper by Schaffrin (2013). 
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