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Abstract: We present the optimized library of synthetic galaxy spectra. This li-
brary will be used for the Gaia satellite observations of unresolved galaxies. These 
galaxy spectral templates are useful for the optimal performance of the unresolved 
galaxy classifier (UGC) software. The UGC will assign spectral classes to the ob-
served unresolved galaxies by Gaia (classification) and estimate some of their in-
trinsic astrophysical parameters, which were used to create the synthetic library 
(parametrization). We also present the classification and parametrization results 
using the Gaia-simulated version of the optimized library of synthetic galaxy spec-
tra. To optimize our synthetic library, we applied the principal component analysis 
(PCA) method to our synthetic spectra and studied the influence of the star-
formation rate parameters on the spectra, and how these agree with some typical 
characteristics of the galaxy spectral types. We then used support vector machines 
(SVM) to classify and parametrize the optimal simulated spectra. In the final set of 
synthetic spectra, overlaps in spectral energy distributions and colors are highly 
suppressed, while the results of UGC classification are improved. 
 

 

1. Introduction 
 

ESA’s cornerstone Gaia mission is going to repeatedly observe a billion astro-
physical objects of the entire sky during the next few years. The faintest objects 
that are expected to be observed will have approximately a G = 20 Gaia magnitude 
(unfiltered light), which corresponds to a limit of V = 20−25 mag, depending on 
the spectral type (Jordi et al. 2006). The final observational data will include low-
resolution spectrophotometry of millions of unresolved galaxies. This will be per-
formed with Gaia’s spectrophotometer, a slit less prism spectrograph with a blue 
(BP) and a red (RP) channel over the wavelength range between 330 nm and 1000 
nm (Jordi et al. 2010). The classification of these galaxies into spectral classes and 
the prediction of some of their significant astrophysical parameters (Kontizas et al. 
2011) are among the goals of the Gaia mission.  
A corresponding software package (unresolved galaxy classifier, UGC) to accom-
plish this task is under development (Bellas-Velidis et al. 2010). The UGC uses 
Gaia-simulated synthetic galaxy spectra as templates, learning to successfully pre-
dict their spectral classes (classification) and the values of some significant astro-
physical parameters (regression). Classification and regression is performed by 
support vector machines (SVM, Vapnik 1995). 
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An extended library of synthetic galaxy spectra has already been produced (Tsal-
mantza et al. 2009) with the PÈGASE.2 model (http://www.iap.fr/pegase) of gal-
axy spectral evolution (Fioc & Rocca-Volmerange 1997; Fioc & Rocca-
Volmerange 1999; Le Borgne & Rocca-Volmerange 2002). This model uses the 
stellar evolutionary tracks of the Padova group, extended to the thermally pulsating 
asymptotic giant branch (AGB) and post-AGB phases (Groenewegen & de Jong 
1993), and the BaSeL 2.2 library of stellar spectra to produce low-resolution 
(R~200) ultraviolet to near infrared synthetic spectra of galaxies. Each spectrum 
represents a specific evolutionary scenario, the latter including a star formation rate 
(SFR) law, an initial mass function (IMF), etc.  
The spectral library produced corresponds to four spectral types (early type, spiral, 
irregular and QSFG – quenched star-forming galaxies) at various random redshift 
values. The synthetic spectra satisfactorily cover the (g - r) – (r - i) color–color 
diagram of the DR4 SDSS galaxies. They have also been simulated for Gaia’s BP 
and RP photometers (description in Sordo & Vallenari 2009), with the addition of 
reddening, using the extinction law by Fitzpatrick (1999) and noise, for three G-
band magnitude values (G = 15, G = 18.5, and G = 20). Support vector machines 
have been applied to the simulated spectra. Currently, an extensive comparison of 
the synthetic spectra with observed SDSS spectra is under development, leading to 
a semi-empirical library of galaxy spectra (Tsalmantza et al. 2012), combining real 
SED with information about galaxy parameters from galaxy evolution modelling.   
All these numerous multi-parameter models have to be tested additionally for over-
laps and for how well they represent realistic spectral classes. The quality of these 
spectra directly affects the efficiency of the UGC. The principal components analy-
sis (PCA) method is able to compress the valuable information and reveal the sig-
nificant correlations among the data entries in these huge databases. This is the 
reason why the PCA has become a very popular tool for determining the abun-
dance of large-extent observations or simulations.  
 

 

 

2. The library of synthetic galaxy spectra 
 
The synthetic spectra have been constructed by using two different star-formation 
law (SFL) scenarios: exponential star-formation rate (SFR) for early-type galaxies, 
and SFR proportional to the mass of the gas for spiral galaxies, irregular galaxies, 
and QSFG. These SFL were then modeled by varying the corresponding SFR pa-
rameters (p1, p2 for the exponential SFR and p1, p2, p3, tinfall for SFR proportional to 
the mass of the gas), at a fixed galaxy age (13 Gyr for early-type and spirals, 9 Gyr 
for irregulars and QSFG). The parameters p1 and p2 of the exponential SFR sce-
nario do not correspond to the parameters p1 and p2 of the SFR scenario that is pro-
portional to the mass of the gas. Their range was determined in a way to produce 
realistic synthetic spectra. For more details about the library of synthetic galaxy 
spectra, see Tsalmantza et al. (2009).  
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For the purposes of the UGC, the synthetic library should contain a considerable 
variety of spectra, which should be as typical as possible and, at the same time, as 
realistic as possible. This way, the relevant software would be able to classify and 
parameterize the spectra of unknown galaxies that Gaia will observe in a more effi-
cient way.  
This library contains spectra with realistic colours. However, a wide range of SFR 
parameters for different SFL and ages were used to produce SEDs with a huge va-
riety of continua shapes and emission line strengths. Moreover, it is not clear how 
the simultaneous variation of two, three, or even four SFR parameters affects the 
shape of the produced SED, for example:  
a) two different sets of SFR parameters of the same SFL can result in similar spec-

tra; 
b) this similarity in spectra could possibly also occur for two different sets of SFR 

parameters assuming two different SFL, i.e. a spiral galaxy similar to an early 
type one; 

c) the various spectral types could contain a considerable amount of non-normal 
galaxy spectra.  

To optimize the spectral library and use it for the purposes of a learning-based al-
gorithm like UGC, it is important to know how the various sets of SFR parameters 
affect the shape of the resulting spectra. This information could be used to identify 
duplicated spectra of the same spectral type, spectral overlaps between different 
spectral types, and non-normal spectra. The corresponding suppression of these 
spectra could improve the classification and regression efficiency of UGC. Addi-
tionally, a better understanding of the modelling would be obtained for the relation 
between input parameters and output spectra. This would ensure a more productive 
future usage of the PÈGASE code.  
Of course, in reality spectral overlaps between different spectral types as well as 
more complex cases such as mergers, are to be expected, which will make the clas-
sification and parameterization more difficult and challenging. However, such a 
puzzling task would be better addressed with a simple and realistic set of 
spectral templates.   
Each galaxy spectrum can be considered as a point in a multidimensional space, 
with as many axes as the number of its wavelength bins. In each axis, this galaxy 
will have the flux value of its corresponding bin. Because a plot like this would be 
impossible to draw, other methods are required to reduce the dimensionality to just 
two or three principal dimensions to gain an overview of all spectra simultaneously 
and analyze the whole library of synthetic galaxy spectra at once. This can be done 
with the principal components analysis method, as we show in the next section. 
 
3. Principal components analysis for the study of the synthetic spec-

tra 
 
The principal components analysis is part of a family of methods called unsuper-
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vised methods. Unsupervised methods are used to visualize data, usually to indi-
cate groups (clustering), or to classify data. They apply when no classes, such as 
spectral types, are defined a priori or when existing classes are to be confirmed. 
The PCA provides a linear orthogonal transformation of a data set (e.g. galaxy 
spectra) into a new base, where a particular characteristic of interest (e.g. the vari-
ance of the original data) is preferentially highlighted. The new set of axes onto 
which the original data are being projected is called the principal components 
(PCs).  
Amongst the numerous relevant publications, we refer the reader to the PCA appli-
cations on stellar spectra from the Michigan Spectral Survey (Bailer-Jones et al. 
1998) and the SDSS/SEGUE project (Re Fiorentin et al. 2007), and on galaxy 
spectra from SDSS (Yip et al. 2004), DEEP2 Redshift Survey (Madgwick et al. 
2008), the 2dF Galaxy Redshift Survey (Folkes et al. 1999) and the Spitzer Infrared 
Spectrograph (Wang et al. 2010). The PCA has also been applied to spectroscopic 
imaging observations (Heyer et al. 1997; Steiner et al. 2009), where spatial infor-
mation is available. Steiner and collaborators managed to discover the existence 
and the location of an active nucleus of very low luminosity in the NGC 4736 gal-
axy. Finally, Ronen et al. (1999) analyzed synthetic galaxy spectra, including 
PÈGASE spectra, with different ages, star-formation histories and metallic ties, 
while Tsalmantza et al. (2007) visualized PÈGASE spectra corresponding to Hub-
ble types.  
For a (n spectra si) × (m wavelength bins) data set, the PCA applies as follows:  
(a) either the correlation matrix (standardized PCA) or the variance-covariance 

matrix (unstandardized PCA) of the data is computed;  
(b) the eigenvalues λ and the eigenvectors (eigenspectra) u (principal components) 

of either the correlation matrix or the variance-covariance matrix are calcu-
lated. If n ≥ m, then m eigenvalues and m corresponding eigenvectors are com-
puted;  

(c) the eigenvalues are sorted in decreasing order. The first principal component, 
u1 (PC1), corresponds to the first (higher value) eigenvalue λ1 and accounts for 
the maximum amount of the total variance of the data. The second principal 
component, u2 (PC2), corresponds to the second eigenvalue λ2, is orthogonal to 
PC1 and accounts for the second highest variance fraction. Lower-order princi-
pal components are found the same way. 

 
Thus, each original spectrum si is decomposed onto the new set of axes u (eigen-
spectra) as  
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where αk,i is the admixture coefficient (the projection of the ith spectrum onto the 
kth principal component). In many cases, the first few principal components ac-
count for practically the total variance of the original spectra. This means that the 
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most significant PCs can be used to reconstruct the original spectra with high accu-
racy, thus providing an efficient data compression. The reduced reconstruction s(r)i 
of si by using the r most significant PCs is  
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If r ≤ 3 is satisfactory, then the data set can be visualized by two or three-
dimensional plots and be further analyzed. The reduced reconstruction can be also 
used to remove noise and identify unusual spectra. For this reason, the PCA can 
pre-process data before they are analyzed by a classifier (Bailer-Jones et al. 1998). 
The above denote the main advantages of PCA: data compression and dimensional-
ity reduction.  
We applied the PCA method to the library of 28 885 synthetic galaxy spectra with 
z = 0. Because we aim to retain the relative strengths of the spectral features of the 
synthetic spectra, we used the unstandardized PCA procedure (see also Steiner et 
al. 2009). We computed the variance-covariance matrix, where the diagonal ele-
ments represent the variances of the flux bins and the off-diagonal elements the 
covariances between them.  
The amount of the total variance and the corresponding cumulative variance of the 
five most significant eigenvectors are listed in Table 1. The reconstruction error 
that corresponds to the use of up to a specific eigenvector is also listed in Table 1. 
This error is the mean absolute percentage error in the total normalized flux. There-
fore it is sufficient to consider the first two principal components to accurately ana-
lyze the whole library of synthetic galaxy spectra and use them in UGC, because 
we have a low error of 2% (on average) in spectral reconstruction and a 99% inclu-
sion of the total variance. The data dimensionality is vastly reduced, apparently 
without significant loss of information. 
 
Table 1 Amount of the total variance of the five most significant eigenvectors, the cumula-

tive variance, and the corresponding reconstruction error for the synthetic galaxy 

spectra. 

Eigenvector 
Variance 

(% of total) 
Cumulative variance 

(% of total) 
Reconstruction  

error (%) 

u1 94.61 94.61 6.86 
u2 4.25 98.85 1.87 
u3 1.05 99.90 0.32 
u4 0.07 99.98 0.12 
u5 0.02 99.99 0.07 

 
Figure 1 shows the projection of the synthetic galaxy spectra on the first and the 
second principal components. The representation of all the galaxies on the plane of 
the first two principal components can help us investigate a) among which spectral 
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types there are overlaps and b) which sets of SFR parameters cause these overlaps. 
This investigation can help us optimize the existing library of synthetic galaxy 
spectra by suitably adjusting the SFR parameters space, and define the context of a 
future extension through a better knowledge of the modelling. However, this ap-
proach has to be implemented in a way that the optimumset of synthetic spectra is 
still realistic.  
In Figure 1, early-type galaxies are distributed toward the lower part of this plot, 
where the emission-line dominant PC2 is of less importance. The majority of them 
have negative PC2 values, which decreases the emission line strengths of the PC1 
contribution. On the other hand, irregulars and QSFG tend to be distributed toward 
the upper left part of the diagram, where PC2 is more significant than in the previ-
ous case. Spirals show a broader variety of PC1-PC2 combinations. 
 

  
Figure 1 Projection of the synthetic galaxy spectra (Tsalmantza et al. 2009) on the first 

(PC1) and the second (PC2) principal components for each spectral type. 

 
These rough distinctions together with overlaps between the various spectral types 
up to some reasonable level are to be expected. However, this figure shows that the 
overlaps are quite extended. Spiral galaxies are highly overlapped with early type 
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galaxies and QSFG, while QSFG are also highly overlapped with irregular galax-
ies. Less overlap occurs between spirals and irregulars and between QSFG and 
early-type galaxies. No overlap exists between early-type and irregular galaxies. 
 

 

4. Optimization of the library of synthetic galaxy spectra 
 
The findings of the previous section could explain the classification performance of 
the scientific tests for the UGC software, using the Gaia-simulated version of the 
synthetic library. For example, most of the misclassified early-type galaxies are 
classified as spirals, while not a single early-type galaxy is misclassified to the ir-
regular spectral class. An optimized version of the synthetic library of galaxy spec-
tra with less overlaps could increase the spectral type classification and the parame-
ters regression performance of UGC.   
The analysis of the results of the PCA application to the synthetic galaxy spectra 
implies to truncate a) emission line early-type galaxies that resemble spirals; b) 
non-emission line low-SFR early-type galaxies; c) spiral galaxies with high p2 val-
ues that resemble QSFG and irregulars; d) irregulars and QSFG with extremely 
high p2 and tinfall values, similar to each other; and e) QSFG without emission lines 
that resemble spirals. Table 2 lists the optimized range of the library of synthetic 
galaxy spectra.  
The PCA method was applied to the library of the optimal spectra to investigate the 
changes it has undergone. The most significant components of the optimum spectra 
are almost identical to the corresponding PCs of the original library. Figure 2 illus-
trates the distribution of the optimum spectra to the two most significant PCs, 
which have a corresponding error of 1% in spectral reconstruction and a 99% in-
clusion of the total variance. Because the PCs did not change much, the distribution 
of the optimum spectra on them reveals similar trends like those illustrated in Fig-
ure 1. However, the optimization results are evident. Early-type galaxies form a 
distinct group, separately from spirals, with a desired SFR, and the spiral-irregular 
and spiral-QSFG overlaps have been limited to a relatively narrow region.   
Additionally, the high concentration of late-type galaxies in the lower left part of 
this plot has been reduced. A notable overlap between irregulars and QSFG is pre-
sent in the optimized data. This is not surprising, because the corresponding spectra 
do have many common characteristics. In any case, overlaps between the various 
spectral types are to be expected in real data.  
Clearly, it is not necessarily correct to have galaxy spectra anywhere in a PC1-PC2 
diagram. Physical constraint limit the possible spectral diversity, and a robust spec-
tral decomposition like the one provided by the PCA method must reflect these 
limitations.  
The optimum synthetic galaxy spectra are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via  
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/538/A38. 
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Table 2 Optimized range of SFR parameters for each galaxy spectral type. The p1, p2 

parameters correspond to the adopted SFL respectively. 

SFR parameter Optimized range Units 

p1 (Early-type) 10 – 2 000 Myr 

p2 (Early-type) 0.5 – 1.5 Msolar 

p1 (Spiral) 0.3 – 2.4 --- 

p2 (Spiral) 5 – 5 000 Myr/Msolar 

tinfall (Spiral) 5 – 16 000 Myr 

p1 (Irregular) 0.6 – 3.9 --- 

p2 (Irregular) 4 000 – 40 000 Myr/Msolar 

tinfall (Irregular) 5 000 – 20 000 Myr 

p1 (QSFG) 0.6 – 3.9 --- 

p2 (QSFG) 4 000 – 40 000 Myr/Msolar 

p3 (QSFG) 1 – 10 Myr 

tinfall (QSFG) 5 000 – 20 000 Myr 

 
 
5. UGC and optimum Gaia-simulated spectra 
 
It is important for the development of the unresolved galaxy classifier to investi-
gate the impact of optimizing the library of synthetic galaxy spectra to its perform-
ance. The UGC uses the Gaia-simulated version of the synthetic library. It is an 
algorithm that is based on the implementation of the supervised learning method 
SVM. These SVMs (Vapnik 1995) can be used for data classification through the 
definition of an optimum hyperplane that separates the members of the various 
classes that describe the data. For this purpose, a set of training data is used to train 
the SVMs and prepare it to classify data of unknown class. The SVMs can also be 
used for parameter regression. Again, a set of training data is necessary to train the 
SVMs and prepare them to predict the parameter values of data that lack this in-
formation.  
The SVMs are trained to predict the spectral type (classification) and the SFR pa-
rameters p1, p2, p3 and tinfall values, together with extinction and redshift values (re-
gression).We applied this procedure to two sets of simulated data, the first contain-
ing “clean” spectra without any addition of noise, extinction, or redshift, and the 
second containing noisy, reddened, and redshifted (“realistic”) spectra, for G = 15 
Gaia magnitude. 
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Figure 2 Projection of the optimized synthetic galaxy spectra on the first (PC1) and the 

second (PC2) principal components for each spectral type. 

 

 

The classification efficiency (percentage of successful predictions) for the “clean” 
spectra before and after the optimization is ~100%. The corresponding results for 
the noisy reddened and red shifted spectra are shown in Figure 3. Spectral type 
predictions of these spectra are quite successful. Spectral optimization in general 
improved the classification efficiency of UGC, especially for the early-type galax-
ies, where the predictions where about 25% more successful. Spirals and irregulars 
are slightly better classified (~3%), while the optimization practically left the 
QSFG classification efficiency unchanged, which was already high. These results 
reflect the suppression of the overlaps between the various spectral types achieved 
through the optimization of the spectral library. 
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Figure 3 Classification performance of UGC for the noisy, reddened, and redshifted simu-

lated spectra, for each spectral type. Each pair of columns demonstrates the suc-

cessful predictions of the corresponding spectral type, before (left column) and 

after (right column) the optimization. 
 

 

 

5. Conclusions 
 

We optimized the library of synthetic galaxy spectra (Karampelas et al. 2012), 
which was produced with PÉGASE.2 code (Tsalmantza et al. 2009), setting new 
boundaries in the space of the galaxy parameters. The application of the principal 
component analysis method to this extended library vastly reduced its dimensional-
ity without any significant loss of information and revealed spectral overlaps. It 
also provided ways to a better understanding of how the multi-parameter modelling 
affects the final shape of a synthetic spectrum. Additionally, the investigation of 
the various star-formation laws used in the modelling helped to trace some non-
normal synthetic spectra. This investigation led to a set of more realistic synthetic 
spectra, where overlaps between spectra and spectral colours were highly sup-
pressed. The findings could be used to define the context of a future extension of 
this spectral library, because a better understanding of the modelling was achieved.   
The Gaia-simulated version of this optimum set of spectra was used for training the 
unresolved galaxy classifier code, which will be part of the Gaia satellite software. 
The training was performed by applying the support vector machines method. The 
classification efficiency was in general improved. Advances in the code itself, 
which is currently under development, could limit the errors even more. 
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