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Abstract. We study the regions of convergence of the equilibrium positions of a 

small particle in the force field of a regular polygon N body formation, where the 

ν=Ν-1 big bodies, called hereafter peripheral primaries, are located at the vertices 

of the fictitious regular ν-gon, have equal masses m and create Newtonian poten-

tials, while the Nth-body (central primary) has a different mass m0, is located at the 

center of the polygon and creates a post-Newtonian Manev-type potential.  
 

 

1. Introduction 
 

The N-body problem is one of the most important issues in Celestial Mechanics. In 

the relevant literature there are many particular cases, one of which is based upon 

the so-called restricted (N+1)-body regular polygon model (Scheeres, 1992; Kal-

vouridis, 1999; etc.), where ν=Ν-1 of the bodies-members of the system are spheri-

cal, homogeneous with equal masses m, and are located at the vertices of an imagi-

nary regular ν-gon, while the Νth body has a different mass m0 and is located at the 

center of mass of the system (Figure 1). This formation rotates around the center of 

mass with constant angular velocity, so that all the primaries are in relative equilib-

rium. A small body, natural or artificial, moves in the neighborhood of the system 

under the influence of all the primaries. The original version was based on the as-

sumption that all big bodies create Newtonian force fields. Newton’s theory domi-

nated for many centuries and could explain the motion of the bodies in a very sim-

ple way. However, some physical phenomena, such as the motion of the apsidal 

line of the moon which was already known at that era, remained inexplicable. 

Newton himself knew that his theory could not give a convincing answer to this 

problem and for this reason inserted a corrective term in his famous formula, ex-

pressing the universal law of gravitation (Book I, Article IX, Proposition XLIV, 

Theorem XIV, Corollary 2 of Philosophiae Naturalis Principia Mathematica) (see 
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for a detailed historical review the work of Haranas-Ragos-Mioc (2011)). After 

Newton, many scientists tried to give a convincing answer to this problem. Some 

of these works appeared before the theory of Relativity, while some others ap-

peared after it. In the latter group belong, among others, the works of Manev (1924, 

1930). All these versions of the Newtonian classical potential are often referred to 

as post-Newtonian potentials. In 2004, Arribas and Elipe presented an improved 

version of the ring (N+1)-body problem. They considered that the central primary 

creates a post-Newtonian potential, while a little later Elipe et al. (2007) studied the 

periodic motions of the particle in such a dynamical system. However, in the 

aforementioned papers, the authors directly introduced the perturbative term in the 

final expression of the total potential function of the system. Here, we have reproc-

essed the problem from the beginning by assuming a Manev-type potential A/r + 

B/r2 for the central primary with A=1 and B=eα, where α is the side of the regular 

polygon of the configuration. The problem is characterized by three parameters, 

namely the number ν of the peripheral primaries, the mass parameter β=m0/m and 

the coefficient e, which measures the contribution of the non-Newtonian term of 

the potential of the central primary. Parameters ν and β are always positive, while 

parameter e takes small real values (<1), either positive or negative. Under these 

assumptions, we study the attracting regions of the equilibrium positions of the 

particle and we present some of the results obtained so far.  

 

 
Figure 1. The configuration of the ring problem with the two coordinate systems; the iner-

tial frame Oξηζ and the synodic one Oxyz 

 

 

2. Equations of motion 
 

We use a synodic coordinate system Oxyz centered at the central primary P0, which 

is rigidly attached to the primaries. After normalization of the physical quantities, 
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we obtain the following dimensionless differential equations which describe the 

motion of the particle.  
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are the distances of the particle from the central and the peripheral primaries, 
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There is a Jacobian-type integral of motion,  
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3. Equilibrium points and zones - Parametric evolution- Stability 
 

As it is known, in an equilibrium position we have the conditions 
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Their exact locations are calculated numerically by solving (5) using a numerical 

method. In the gravitational case, Kalvouridis (1998) proved that the existing equi-

librium positions are all located on the plane Oxy of the primaries’ motion and are 

grouped on either five or three equilibrium zones according to parameter β. If  

≥ l
ν

β  the existing equilibrium zones are three (A1, C2, C1) (Figure 2a), otherwise 

the equilibrium zones are five (A1, A2, B, C2, C1) (Figure 2b). Each zone consists of 

ν equilibrium positions. Zones A1 and A2 evolve inside the fictitious circle of the 

peripheral primaries and very close to each other. Zones C2 and C1 evolve outside 

the circle of the peripheral primaries. Finally, the equilibria of zone B appear close 

to the circle of the primaries and between them.  

 

 
 

 
 

(a) (b) 

 

Figure 2. (a) β<l
ν
 , five equilibrium zones, (b) l

ν
β ≥ , three equilibrium zones. Black dots 

denote the positions of the primaries 

 

 

In the considered case with a central body creating a Manev’s potential, if e>0, 

then the equilibrium zones are either five or three as in the gravitational case. 

However, this transition depends on both parameters β and e. Figure 3 shows the 

bifurcation curve of the equilibrium zones for ν=7. In the area below the bifurca-

tion curve (region I) there are five equilibrium zones, while above it (region 2) 

there are only three equilibrium zones. This curve is very well approximated by the 

third-order polynomial, 

 2 3( ) 3.1008 8.02052 16.9227 17.9331P x x x x= − + −  

As the number ν of the peripheral primaries increases, this curve is displaced to-

wards the upper part of the diagram. In other words, region I, extends to higher 

values of parameter β. Table 1 shows some indicative pairs of values (β, e), where 

this bifurcation occurs. Here, we note that for the considered problem where only 

the central primary creates a post -Newtonian potential, the symmetry of the distri-

bution of the equilibrium points is preserved regardless of the value of parameter e. 
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ν = 7 ν = 9 
e 

βν βν 

0.0001 3.100 8.255 

0.001 3.093 8.239 

0.01 3.022 8.100 

0.055 2.708 7.443 

0.1 2.455 6.890 

0.209 2.000 5.840 

 

 

 
 

Figure 3. Bifurcation curve for ν=7. Below the curve (region I) five equilibrium zones 

exist, while above it (region II) the equilibrium zones are only three 

 

 

If e<0, two new groups of planar equilibrium positions may appear, namely E1 and 

E2 which evolve inside the circle of the peripheral primaries and very close to the 

central primary. Apart from the planar equilibria and for certain combinations of 

values of e and β, two more out-of-plane equilibrium positions (L-Z and L+Z) have 

been found on the z-axis of the synodic system and in symmetric positions with 

respect to the xy-plane. The number of the planar equilibrium zones depends on 

both parameters β and e. Figure 4 is a bifurcation diagram showing the number of 

the existing equilibrium zones on the xy plane for ν=7 and for various values of e 

and β. 

There are three bifurcation lines BL0, BL1 and BL3 which intersect or converge and 

coincide in some parts of the diagram separating in this way the area (e,β) in five 
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regions. We have found that the following general rules govern the number and the 

type of the existing equilibrium zones in these regions:  

• On the left side of BL0, zones B and A2 appear.  

• On the left side of BL1, zones Ε1 and Α1 disappear.  

• On the left side of BL2, zones Α2 and Ε2 do not exist.  

 

 

  
(a) (b) 

 
Figure 4. Bifurcation diagram e-β of the equilibrium zones for ν=7 and e<0; (a) bifurcation 

curves BL0, BL1 and BL2, (b) regions I, II, III, IV and V with the number of the 

existing equilibrium zones  

 

 

Provided that in region II five equilibrium zones exist, namely, zones C2, Ε2, E1, 

A1, C1, then according to these rules, in region I there are seven zones, namely, C2, 

Β, Α2, Ε2, E1, A1 and C1; in region IV five equilibrium zones exist, namely, zones 

C2, Β, Α2, Ε2 and C1; in region IV there are three zones, namely C2, Ε2 and C1 and 

finally, in region V the existing zones are three, that is, C2, Β and C1.  

Figure 5 shows the distribution of the equilibrium points in each of the aforemen-

tioned five regions of the bifurcation diagram. 

 

 

4. Procedure for the determination of the regions of convergence 
 

As we mentioned before, the non-linear algebraic system (5) is solved numerically 

by using an algorithm, provided that an initial approximation is given. The iterative 

process stops at the desired target which is an equilibrium point. We can consider 

the process of the consecutive iterations as one, where the determination of succes-

sive approximating values-points forms a crooked path-line leading to the desired 

target, which is an equilibrium point. As a consequence, the set of the initial points 

that lead to the points of a particular equilibrium zone is called an “attracting do-

main” or “region of convergence” or “basin of attraction” (Croustalloudi and Kal- 
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(a) (b) 

  

(c) (d) 

 

(e)  

 
Figure 5. Distribution of the equilibrium points on the existing zones for e<0; (a) region I 

(seven zones), (b) region II (five zones), (c) region III (three zones), (d) region 

IV (five zones), (e) region V (three zones). Black dots are the locations of the 

primaries 
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vouridis, 2004, 2007; Kalvouridis, 2009). We shall use hereafter all three terms. 

We restrict our investigation to the planar equilibrium zones (z=0) and we apply 

the well-known Newton-Raphson’s method by scanning both axes of plane Oxy in 

the intervals [ ]5.2,0()0,5.2 ∪−∈
o
x , ( ]5.2,0

0
∈y  with steps Δx0 =Δy0=0.005. 

The converging initial pairs (x0, y0) are then separated in as many groups as the 

number of the existing equilibrium zones. At the same time, we record the number 

of the iterations (steps) required to find an equilibrium position with a predeter-

mined accuracy (here 10-8). The attracting domain of each zone presents, as it is 

expected, all the symmetry elements of the primaries’ arrangement. It generally 

consists of some “compact” parts, that is, areas all the points of which lead to the 

equilibrium positions of this particular zone and therefore show a deterministic 

aspect since small alterations in their values lead to the same target. There are also 

dispersed points that lie on the boundaries of the “compact” regions of this or other 

zones. Therefore, these boundaries are not clearly defined and are characterized by 

a chaotic behavior in the sense that these points are very sensitive to small altera-

tions of their values, so that the prediction of their final destination becomes ex-

tremely difficult.  

 

 

5. Evolution of the regions of convergence of the zones when e is 
negative - Parametric dependence 

 

In what follows we shall restrict our study to the case e<0, since the case with e>0 

is very much alike to the gravitational one; except that the transition from five to 

three zones depends on both parameters e and β (see Figure 2, in section 3). An 

analytical description of the evolution of the attracting domains in this case can be 

found in a previous article by two of us (Croustalloudi and Kalvouridis, 2007). As 

we have mentioned in section 3, there are five different possibilities according to 

the combination of values of e and β. We shall proceed to describe two sample 

cases; the first one concerns a pair of (e,β), for which all seven equilibrium zones 

exist (region I of the diagram of Figure 4) and the second one concerns a pair (e,β), 

which falls in the region V, where only three zones, namely, C2, Β and C1, exist.  

 

5.1. Evolution of the regions of convergence when (e,β) falls into  
region I of the bifurcation diagram 

There are seven equilibrium zones, namely Ε1, E2, A1, Α2, B, C2 and C1 (see Figure 

6a). Regarding the attracting domains of zones E1 and E2, we observe a dense dis-

tribution inside an almost circular area which surrounds the central primary. The 

compact parts of this distribution are very narrow and evolve along the directions 

of the radii where the equilibrium points lie. In this circular area, besides the dis-

persed points that belong to E1 and E2, we also observe points that belong to the 

remaining five zones. Dispersed points of these zones are also found beyond this 

central circular area; these form repetitive patterns with a fractal structure. Figures 
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6a and 6b show the evolution of these zones, while Figures 6c and 6d are magnifi-

cations of the circular areas of these zones.  

The attracting domain of zone A1 presents “compact”, diamond-shaped parts with 

wavy and vague boundaries developing between each peripheral primary and the 

previously described circular area of zones E1 and E2. Inside these areas lie the 

equilibrium positions of that zone (Figure 6e). The more β  augments, the more 

these areas expand in a way that their radial dimension remains steady, while their 

maximum transverse dimension increases. This expansion causes an approximation 

of the consecutive “compact” areas of that zone.  

The “compact” regions of zone B (when it exists) develop between the consecutive 

peripheral primaries, whose positions lie on the contacts of these regions. Their 

form is similar to that of the “compact” regions of A1, but their boundaries are 

more indented, sharp and vague (Figure 6g). When β  increases their radial dimen-

sion is compressed, while their transverse dimension remains almost stable.  

The attracting domains of zone A2 develop between the “compact” regions of 

zones A1 and B and the circular area of the dense distribution of the points of zones 

E1 and E2, thus creating a kind of three-legged formations, one part of which 

evolves toward the direction of the radius that connects the origin of the axes with 

an equilibrium position of that zone, while the other two develop toward the direc-

tions connecting the particular position with two neighboring peripheral primaries 

(Figure 6f). In each of these formations is observed a basic “compact” region, 

which surrounds the corresponding equilibrium point and is more expanded than 

the others. The development of the rest of the “compact” regions toward the afore-

mentioned directions is characterized by self-similarity with shapes whose dimen-

sions diminish as they approach a central primary or a peripheral one. The “com-

pact” regions of A2 are framed by dispersed points, which accumulate around them 

and evolve in a similar way. Contrary to what takes place in A1, the more β  aug-

ments, the attracting regions of A2 reduce due to the drastic reduction of the dis-

persed points that border the “compact” regions.  

The attracting area of C1 is extremely complex and is therefore difficult to be de-

scribed geometrically. We could generally say that each formation consists of two 

basic “compact” regions, the biggest of which contains the equilibrium point (Fig-

ure 6i). As regards the dispersed points, on the one hand they are organized in a 

dense way forming meniscus that surround the two basic “compact” regions, and 

on the other hand, they are diffused at the boundaries of the “compact” regions of 

the other zones.  

In the plane areas that lie between the “compact” regions of zones C1 and B stretch 

the “compact” regions of the attracting area of zone C2, which have the form of a 

mushroom and contain the equilibrium points of this zone (Figure 6h). The dis-

persed points surround densely the “compact” regions, but also diffuse at the 

boundaries of the compact regions of the other zones. As β  augments, but the pair 

(e,β) remains at the same region of the bifurcation diagram of Figure 3, the “com- 
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(a) (b) 

 
(c) (d) 

  
(e) (f) 
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(g) (h) 

 
 

(i) (j) 

Figure 6. Attracting domains for a configuration with ν=7 and β=2, e=-0.1 (region I of the 

bifurcation diagram-seven equilibrium zones); (a) zone Ε1, (b) zone Ε2, (c)-(d) 

details of  the central parts of zones E1 and E2, (e) zone Α1, (f) zone Α2, (g) zone 

Β, (h) zone C2, (i) zone C1, (j) bar chart showing the number of the converging 

points of each equilibrium zone 

 
 
pact” regions are slightly reduced, while the dispersed points get denser. Neverthe-

less, the total attracting domain of the zone is reduced. As a general remark, we 

note that at the values (e, β) which lie on the bifurcation curves, there is an abrupt 

change in the number and type of equilibrium zones, which results in a change (in-

crement or decrement) of the points of the attracting domains of the existing zones.  

The bar chart of Figure 6j shows the number of the converging points of each equi-

librium zone. It is evident that the attracting domains of zones E1 and E2 are the 

smallest ones, while the basin of attraction of zone C2 is the largest.  
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5.2. Evolution of the regions of convergence when (e,β) falls into  
region V of the bifurcation diagram 

As a sample case we have used the set of values ν=7, β=2, e=-0.2. From the dia-

gram of Figure 4b we see that only three equilibrium zones exist, namely, C1, B 

and C2 (see also Figure 5e). Figure 7 shows the attracting domains of these zones. 

The “compact” regions of these domains have the basic characteristics that were 

described in the previous case. However, in the area which extends between the 

central primary and the peripheral ones for each zone, the dispersed points are 

densely distributed and form a fractal-like structure which is quite similar to all 

three zones (Figure 7a, b, c).  

The bar chart of Figure 7d shows the number of the converging points to each equi-

librium zone. Evidently, the attracting domain of zone C1 is the smallest one, while 

that of zone C2 is the largest one. 

 

 

6. Areas of more or less consuming computing time 
 

Our next step was to study the way with which the attracting domain of an equilib-

rium zone is resolved into smaller regions, according to the number of the steps 

needed to reach the equilibrium positions of this particular zone. This resolution is 

related with the speed of convergence and, consequently, with the economy in 

computing time, a fact that is important for both the speed and the accuracy of 

computations. As we have already stressed in section 3, the number of the required 

steps in order to achieve the location of an equilibrium position depends on the 

numerical method used and on the predetermined accuracy. However, the results 

we obtained when we used the same method (Newton-Raphson) and a variety of 

values for accuracy, presented such similar images, that general results can be de-

duced. In order to achieve the specific goal, we considered the class intervals 1-5 

(very fast convergence), 6-10 (fast convergence), 11-15 (moderate convergence), 

16-20 (slow convergence) and >20 (very slow convergence) for the number of 

steps and accuracy of 10-8. The general observations that concern all the zones can 

be summarized as follows: 

• The subset of the “launching” points of the ),( yx  plane corresponding to the 

class interval 1-5 steps (very fast convergence) for any equilibrium position of 

any equilibrium zone, consists of a “compact” region which occupies the cen-

tral “compact” part of the attracting domain around each equilibrium position 

of this particular zone and of a few dispersed points which appear near these 

areas or between the “compact” regions of other zones. 

• The subset of the points corresponding to the class interval 6-10 steps (fast 

convergence) of each zone, consists of “compact” regions which complement 

the “compact” regions of the class interval 1-5 steps and of a large number of 

isolated points of the attracting area of this particular zone. These points are 

spread in a widely extended area of the ),( yx  plane.  
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(a) (b) 

  
(c) (d) 

 

Figure 7. Attracting domains for a configuration with ν=7 and β=2, e=-0.2 (region V of the 

bifurcation diagram, three equilibrium zones); (a) zone C1, (b) zone C2, (c), zone Β, (d) bar 

chart showing the number of the converging points of each equilibrium zone  

 

• The same is true for the rest of the class intervals 11-15 (moderate conver-

gence), 16-20 (slow convergence) and >20 (very slow convergence) steps, 

which merely consist of dispersed points lying either on the boundaries of the 

“compact” regions of the previously mentioned class interval, or between the 

“compact” regions of the other equilibrium zones and they have similar shapes. 

Naturally, a decreasing density is observed as the number of the steps in-

creases. Since the forms and the development of the subgroups above are simi-

lar to the ones of class interval 6-10, we do not think that a further presentation 

of figures referring to them is necessary.  

 

The bar charts of Figure 8 show the number of the converging points per class in-

terval for each equilibrium zone in the two considered cases with ν=7, β=2, e=-0.1 

(Figure 8a) and ν=7, β=2 and e=-0.2 (Figure 8b) respectively. As we can see the 

class interval 6-10 steps is the largest one.  
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(a) (b) 

 
Figure 8. ν=7, β=2. Νumber of converging points per class interval for each equilibrium 

zone; (a) e=-0.1, (b) e=-0.2 

 
 
 
7. Conclusions and remarks 

 
In the above paper, we have studied the creation, evolution and parametric depend-

ence of the attracting domains in a ring-type N-body model where the central body 

creates a Manev-type potential. As we have seen, an attracting area is formed for 

each equilibrium zone. This area consists of a “compact” part and of dispersed 

points. These points are distributed in the boundaries of the compact parts of the 

same or of other equilibrium zones. For a particular ν, the evolution of these do-

mains is influenced by both parameters, mass parameter β  and Manev’s parameter 

e. Regarding parameter e, when it is positive we observe an evolution which is very 

similar to that of the pure gravitational case (e=0). However, when e<0 major dif-

ferences are observed. Two new equilibrium zones, that is E1 and E2 may appear 

and the number of the existing zones may change from seven to five and then to 

three according to the values of e and β. In all cases, the attracting regions of zones 

E1 and E2 are the smallest, while that of zone C2 is the greatest. As regards the class 

intervals of the attracting domains of the equilibrium zones, we must note that the 

areas corresponding to very fast convergence (within 1-5 steps) consist of the cen-

tral “compact” parts of the attracting domains of the specific zone that surround the 

equilibrium positions of this zone and few dispersed points that frame these areas, 

but also appear near other equilibrium zones. We also found that in all cases the 

class interval 6-10 steps is the densest. 
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