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Abstract 

 Basic tool in the process of gravity field modeling and interpretation is the forward 

computation of the gravitational effect of mass distributions of known geometry and consis-

tency. Apart from the standard works of Jung (1961) and Talwani (1973), where closed 

expressions for the gravity anomaly of a conical mass distribution for a point situated at 

special locations at its symmetry axis can be found, the case study of a right rectangular 

cone has not received the attention of other ideal bodies in the relevant geodetic or geo-

physical literature, such as the right rectangular prism, cylinder or general polyhedron. 

Scope of the present contribution is to present a thorough overview of the mathematical 

nomenclature linked to the problem of expressing the gravitational effect of a conical mass 

distribution of constant density in terms of a closed analytical solution. Closed analytical 

expressions are presented for the potential and its vertical derivative for random locations 

of the computation point at the symmetry axis. Thereby, a basic distinction concerning the 

height-to-radius ratio of the attracting conical source is performed. 

 

 

1. Introduction 

 Many independent tools and algorithms exist for the purpose of interpreting 

potential field data. These methodologies can be sorted into two basic categories, 

forward and inverse methods. However, some procedures are common to these two 

areas as they serve in certain steps both the forward and the inverse approach. The 

most profound element in this aspect is the computation of the gravity effect of a 

certain mass distribution at random field points. This is crucial to potential field 

interpretation since its main goal is to compare and eventually correlate the ob-

served with the calculated anomalies. Blakely (1996) describes these terms placing 

them in the overall concepts of forward and inverse modeling procedures. Ob-

served is the anomaly that is measured on the field either through direct observa-

tions or through synthesis of the given potential harmonic coefficients of a known 

earth gravity model. It represents the observed gravity field at the corresponding 
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field point. Calculated is the corresponding quantity that can be evaluated mathe-

matically by computing the gravitational effect of known underlying structures at 

the same point. The comparison between the calculated and the observed signal 

permits the initiation of an iterative loop which adapts gradually selected model 

parameters of the calculated signal (such as the geometry or consistency of the 

source) until both signals (calculated and observed) match adequately.  

 Governing quantity in the aforementioned evaluation of the calculated anomaly 

is the modeling choice of the underlying source. Despite the availability of known 

structures in the earth’s interior, as is the case with recent global digital crustal da-

tabases, even small variations in the actual geometry and consistency of the anoma-

lous source can affect the numerical value of the calculated anomaly considerably. 

In principle, the iterative scheme commences with some initial guess on the outline 

of the hidden source, usually with the shape of an idealized geometric body, to 

which a constant density is assigned throughout its volume in a first approximation. 

Different choices for the geometry of the ideal body may be linked to the nature of 

the problem or the available data, for example the choice of a right rectangular 

prism as the source volume element fits best the data implied by a digital elevation 

model in planar approximation.  

 For the computation of the gravity effect of the corresponding test bodies at 

arbitrary field points analytical, numerical or hybrid solutions may be elaborated. 

The present contribution deals with analytical solutions only, as they represent ex-

act and rigorous expressions for the gravitational potential and its derivatives and 

are therefore superior to a numerical evaluation of the corresponding integral ex-

pressions. A vast literature exists on the topic of closed analytical expressions for 

the gravity effect of ideal bodies. Cylindrical mass distributions have received in 

proportion to other prismatic sources (prisms, polyhedra etc) the less attention, 

perhaps due to an existing restriction in terms of application to real case studies. 

Rosenbach (1947) dealt explicitly with analytical expressions for the gravitational 

effect of cylindrical mass distributions. Furthermore, the cylindrical shape received 

scientific scrutiny due to its central role in laboratory experiments with high sensi-

tivity standards, as for example torsion balance measurements or gravitational con-

stant experiments (Cook and Chen 1982; Chang 1988) and the proposal for the 

implementation of the STEP (Satellite Test of the Equivalence Principle) experi-

ment in the 1990’s (Lockerbie et al. 1995; 1996). The gravity effect of a conical 

mass distribution can be found only in selected references, mainly in connection 

with the gravity effect of a disc of finite thickness (Jung 1961; Talwani 1973). In 

the following, analytical expressions for the gravitational potential and attraction 

are presented for a computation point situated at the cone’s symmetry axis. 
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2. Potential and attraction of a right circular cone 

 The term cone is used to represent a three dimensional solid that is bounded by 

a planar face and the surface which is formed by the line segments joining every 

point of the perimeter of the base with a single point situated outside the basal 

plane, called the apex. When the surface is symmetric with respect to a line passing 

through the apex, then this line is called the axis of the cone. In the present contri-

bution only right circular cones are considered. The term right is used to describe 

the fact that the axis passes through the center of the base and is perpendicular to 

the basal plane, while circular refers to the shape of the base, which in this case is 

a circle. 

 As far as the consistency of the attracting source is concerned, we deal here 

with right circular cones that define mass distributions of constant density ρ. Two 

geometrical distinctions with respect to the height-to-radius ratio of the conical 

distribution are performed. In the first case the scenario is examined where the ra-

dius of the circular base R equals the height of the cone h, i.e. the distance of the 

apex from the basal plane along the cone’s axis. The second case represents the 

more general scenario, where Rh ≠ . In both cases analytical expressions for the 

potential and gravitational attraction are derived for a computation point situated at 

random points along the symmetry axis of the cone including its apex. 

 

Radius of circular base equals height of cone (h=R) 

 Let us consider the conical mass distribution depicted in Figure 1. The cone is 

defined by a circular base of radius  R  and height  h=R.  The included mass is con-

sidered to be of constant density  ρ = ct.  The gravitational potential at a point P 

situated at a random point along the cone’s symmetry axis besides its apex and 

outside the attracting masses, i.e. with coordinates (0, 0, c) where  c > R,  will be 

given by the expression  
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with  x = s cosα,  y = s sinα, 22 )( zcsl −+=  and  α  expressing the angle be-

tween  s  and the x-axis on the  <x y>  plane varying between zero and  2π  (Figure 

1). The finite volume element is defined as  du = dx dy dz = s ds dα dz.  For the 

special case of Figure 1, where the height of the cone equals the radius of its base, 

the upper limit for parameter s will always be  R − z,  with  z  denoting the height of 

the horizontal plane passing through s from the conical basal plane.  

 Thus, equation (1) becomes 
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Figure 1: Geometric definitions linked to the special case of the circular cone, whose 

height equals the radius of its base. The computation point is situated at a ran-

dom point along the symmetry axis of the attracting conical source with coordi-

nates  (0, 0, c). 
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 The analytical solution of the individual integrals in (2) yields 
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 Setting  A = 2,  B = −(2R + 2c)  and  C = c2 + R2,  the last integral of equation 

(5) has the form  
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dzCBzAz ++∫ 2  

and its analytical solution can be found from standard integral tables, e.g. Bron-

stein and Semendjajew (1996, pp 168-169) as 
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 Using this expression and the abbreviation )()22(2 222
RczcRzQ +++−=  the 

closed solution for integral I1 becomes 
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After a few intermediate steps of basic algebra we obtain 
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 Inserting (3), (4) and (6) into (2) and performing some re-ordering the final ex-

pression for the gravitational potential can be obtained as 
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 The vertical derivative of equation (7) will provide the general expression for 

the gravitational attraction due to the conical mass distribution at the same point. 

This will read 
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 For  c = R,  i.e. for a point situated at the apex of the cone, equation (8) simpli-

fies to 
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Talwani (1973) follows a different approach than the direct integration of the cor-

responding kernel function using the geometric limits of the cone, which is dis-

cussed here. Integrating the expression for the gravity effect of a disc of radius r, 

which he derived independently, he obtains an analytical expression for the gravita-

tional attraction for a point located at the symmetry axis of the cone as a function 

of angle  β,  which is the angle subtended by radius  R,  when viewed from the apex 

of the cone. Talwani’s expression for the gravitational attraction computed at the 

apex of the cone reads (ibid., eq. 43) 

)cos1(2 βρπ −= RGV
z

 (10) 

which is identical with expression (9) derived above, since for the case of the cone 

depicted in Figure 1 it holds  β = 45ο,  consequently  cos β = 2/2 . 

Radius of circular base is not equal to height of cone (h ≠R) 

 For the more general case, where the height of the cone h is not equal to the 

radius of its base R, the corresponding integral for the gravitational potential (eq. 2) 

becomes now 
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 All involved parameters follow the definitions given for the cone of Figure 1, 

while the computation point is again situated at  P(0, 0, c),  with  c > h,  i.e. at the 

cone’s symmetry axis but outside the attracting masses and not at the apex. Pa-

rameter  Rz  expresses the upper limit of parameter s and denotes the radius of the 

corresponding circle defined by the cross section of the horizontal plane and the 

conical distribution at  z.  Here, this parameter equals to  

h
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Integrating (11) with respect to s yields 
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The last expression has the general form 
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 From equations (13) – (16) the final analytical expression for the gravitational 

potential can be obtained 
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 The gravitational attraction can be obtained directly by differentiating the last 

equation with respect to c and taking into account the fact that 0=∂∂ cA , 

2−=∂∂ cB   and  ccC 2=∂∂ . 

 

 

3. Concluding remarks 

 Analytical expressions for the computation of the gravity effect of idealized 

attracting sources are a fundamental tool in gravity field modeling and interpreta-

tion. Known geometrical shapes can be used to approximate unknown disturbing 

sources or model the signal of known distributions. The areas of application of 

such formulas stretch from local or regional gravity field modeling and analysis to 
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the modeling of the gravity signal of known anomalous sources in the frame of 

high accuracy experiments in the laboratory. Although numerical integration tech-

niques and high capacity personal computers permit the direct numerical evaluation 

of any multidimensional integral expression, analytical solutions offer mathemati-

cal elegance and geometrical insight into the underlying aspects and the nature of 

gravity field. The right circular conical mass distribution is a case study which has 

not received wide attention in the relevant geophysical and geodetic literature. 

Analytical expressions for the gravitational potential and attraction have been pre-

sented for a computation point situated at the cone’s symmetry axis and outside the 

attracting masses. Two special cases were defined depending on the relation be-

tween the height of the cone and the radius of its circular base. For points outside 

the symmetry axis the analytical derivation of the corresponding expressions be-

come more tedious and involve the use of elliptic integrals. 
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