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Abstract 

 Point-mass functions or multipole base-functions are harmonic functions, which may be 

used to represent the (anomalous) gravity potential (T) globally or locally. The functions 

may be expressed by closed expressions or as sums of Legendre series. In both cases at 

least the two first terms must be removed since they are not present in T. For local applica-

tions the effect of a global gravity model is generally removed (and later restored). Then 

more terms need to be removed or substituted by terms similar to error-degree variances. 

We have done some calculations to illustrate the effect of reducing the point mass or multi-

pole functions, i.e. showing how the first zero-crossing as a function of spherical distance 

comes closer to zero when more terms are removed.  

 

 

1. Introduction 

 Linear combinations of point mass functions or mass multipoles have been used 

for the representation of the global (W) or regional anomalous gravity potential, T, 

see e.g. Balmino (1974), Hauck and Lelgemann (1985), Vermeer (1982, 1989, 

1990,1992,1993), Marchenko et al., (2001), Ballani et al. (1993), Wu (1984).  

 The anomalous potential  T,  is equal to the difference between  W  and a global 

gravity field model like EGM96 (Lemoine et al., 1998), ie. it is a harmonic func-

tion.  

 For a point mass base function we have for an approximation to T: 
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where  G  is the gravitational constant, 
i

M  is the mass,  I the 

number of point masses and 
i
l  is the distance from the mass 

located at the point 
i

Q  to the point of evaluation, P, see Fig. 1.  

 The distance from the origin to  P and 
i

Q  is denoted 
P
r , 

iQr , respectively and the first will always be larger than the 

other. The angle (spherical distance) between the vectors to  P  

and 
i

Q  is denoted ψ.  
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Fig 1 
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 We now drop the subscript on  Q.  The distance  l,  from  P to  Q  is then  

2 2
P Q P Q2 cos( ).= + -l r r r r ψ   For the inverse distance we have  
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where 
i
P  are the Legendre polynomials. Multipole-functions are derive from the 

inverse distance function by integration or differentiation (compare Tscherning and 

Rapp (1974)), and will be denoted  f.  

 

1

( ) ( )

=

=Â
M

i i

i

T P a f P�  (3) 

 The estimate T�  is determined so that  ( )
2

1
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LT obs�   where  M  is 

the number of observations and 
i
L  are the linear functionals associated with the 

observations. In the computations described below we only consider height anoma-

lies (geoid heights), gravity disturbances and second-order radial derivatives. 

 We intend to show that in order to make the functions suitable for regional grav-

ity field modeling low-degree terms may be removed or substituted by appropriate 

weights.  

 

 

2. Higher order derivatives 

 For derivatives with respect to 
P
r  we have series expansions similar to eq. (2), 

where the terms for the first derivative are multiplied with ( 1) /
P

i r- +  and for the 

second derivative with 2( 1) ( 2) / .
P

i i r+ ¥ +  Closed expressions for the derivatives 

are easily found.  
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 Point masses are not the only harmonic functions which may be used as base 

functions when approximating  T,  see e.g. Tscherning (1972), Hauck and Lelge-

mann (1985) but we will only deal with point mass and excentric multipoles base 

functions, since they fully represents the message of this paper. 
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3. Reduced point masses 

 From eq. (2) we see that if we use the representation eq. (1), it will contain 

terms of degree zero and one, which are not present in  T.  So they have to be re-

moved, simply by subtracting from the closed expressions the first two terms in eq. 

(2) or its derivative. (This is not done for the examples of closed expressions in 

section 5). But what if we subtract from the data (and later add back) the contribu-

tion from a global model like EGM96, complete to degree � ?  
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Here  φ  is the geocentric latitude,  λ  the longitude, 
nm
P  the normalized Legendre 

functions and  a  a scale factor close to the semi-major axis. 
nm

C  are the normal-

ized Stokes coefficients with error-estimates 2
.

nm
σ  Degree-variances and error-

degree-variances are sums of the 
nm

C  squared, 2
.

nm
σ  respectively, for a fixed de-

gree,  n,  multiplied with 2( / )GM a .  

 As pointed out by Arabelos (1980) we can not simply put to zero the first  �  

terms. Here a solution was found, i.e. that the first terms were not put to zero, but 

put equal to the so-called error-degree variances, 2
,e i

σ  contingently scaled by a fac-

tor  α  so as to reflect if the model was better (α ≤ 1) or worse (α ≥ 1) in an area.  

 To get a little more insight into this, let us interpret the point mass potential as a 

reproducing kernel in a Hilbert space, where the functions are harmonic down to a 

Bjerhammar-sphere with radius 
B

R  inside the Earth and .Q Br R<  Using a Kelvin 

transformation we obtain a point  D  outside the sphere  
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Krarup kernel, Krarup (1969). When interpreted as a covariance function, it has 

unitless degree-variances equal to 1, i.e. it is not well suited to represent the 

anomalous potential, since the degree-variances of  T  tends to zero like 3
,*

-

n q   

q < 1, see Tscherning and Rapp (1974). So instead of point mass base functions 

one should consider using potentials of other types of masses, like a bar, see Hauck 

and Lelgemann (1985, Fig. 2) or excentric multipoles (Marchenko et al., 2001).  

 There are other inherent problems using mass-type base functions. Which depth 

should be used for the masses. Should they form a grid ? (Vermeer (1990)). This 

has been studied extensively by e.g. Barthelmes and Kautzleben (1983) and 
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Barthelmes (1985). We will not discuss this here, but show tables of reduced point 

mass functions. 

 

 

4. Excentric multipoles – covariance functions 

 The covariance functions generally used in least-squares collocation may be 

interpreted as excentric multipoles using the Kelvin transformation. For two points 

outside the Earth, P and D, we have typically (Tscherning and Rapp, (1974)) for 

the covariance of the anomalous potential,  
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which is the linear combination of 3 excentric multipoles: 
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 Each of these may be represented by a closed expression. The first terms corre-

sponding to the maximal degree of the global model used, should be substituted by 

the (scaled potential) error-degree-variances.  

 

1
2

2

cov ( , , ) (cos )

i

e B

Ν P D i i

D Pi

R
r r ψ ασ P ψ

r r

+
•

=

Ê ˆ
= Á ˜Ë ¯Â  (10) 

 

 

5. Reduced point mass and excentric multipole base functions – 

examples 

 The interesting functions are those which represent the geoid (height anomaly) 

and the first and second derivative with respect to 
P
r . All quantities are anomalous 

quantities with respect to EGM96 complete to degree  �=24.  We consider geoid 

and gravity disturbance at height zero and the second order radial derivative at 

250 km altitude. For the latter we will put the mass-point at depth 242.5 km, corre-

sponding to data ( )
P
r  at 250 km. The Bjerhammar sphere will be put at 1.46 km 

depth. 

 In the first example (Table 1) we use as observation one (anomalous) radial 

gravity gradient observation equal to 0.15 Eötvöes, at height 250 km (M = 1 in eq. 

(3)). The latitude and the longitude are set to zero for the mass-point, but the lati-

tude for the point  P  increases in steps from zero. Table 2 shows the same func-

tion, now with the quantities evaluated at zero altitude.  
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Table 1: Closed and Reduced Point mass functions at altitude 250 km. �ote the 

location of the first zero-crossing. For the reduced function all terms up 

to degree 24 have been set equal to zero.  

Closed  

expression 
Closed Closed 

ψ 
Geoid  

(m) R
ed

u
ce

d
  

to
 d

eg
. 

2
4

 

Gravity  

disturbance  

(mgal) R
ed

u
ce

d
 

2. order  

radial deriv.  

(Eötvös) R
ed

u
ce

d
 

0.0  0.85 0.29  –2.41 –1.79  0.150  0.150  

1.0  0.80 0.24  –2.03 –1.37  0.106  0.100  

2.0  0.70 0.14  –1.34 –0.62  0.043  0.028  

3.0  0.59 0.05  –0.81 –0.09  0.012  –0.005  

4.0  0.49 –0.02  –0.49 0.16  0.002  –0.014  

5.0  0.42 –0.05  –0.31 0.24  –0.001  0.013  

6.0  0.37 –0.05  –0.21 0.23  –0.002  –0.010  

7.0  0.32 –0.05  –0.14 0.17  –0.002  –0.007  

8.0  0.29 –0.03  –0.11 0.10  –0.001  –0.003  

9.0  0.26 –0.01  –0.10 0.01  –0.001  0.000  

10.0  0.23 0.00  –0.06 –0.02  0.000  0.002  

 

 

Table 2: Closed and Reduced Point mass functions at zero altitude. �ote the loca-

tion of the first zero-crossing and the values for zero spherical distance. 

The location is for the geoid at 3°. This corresponds (approximately) to 

the location of the first zero-point for the first Legendre polynomium in 

the series eq. (8). (Legendre polynomials have as many zero points as the 

degree in the interval from -90° to 90° distributed approximately equidis-

tantly, see Heiskanen and Moritz, 1967, Fig. 1-8).  

Closed  

expression 
Closed Closed 

ψ 
Geoid  
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 d
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Gravity  

disturbance  

(mgal) R
ed

u
ce

d
 

2. order  

radial deriv.  

(Eötvös) R
ed

u
ce

d
 

0.0  3.56 3.13 –49.2 –55.3 13.9 16.1 

1.0  1.93 1.24 –7.87 –7.26 –0.11 –0.18 

2.0  1.09 0.31 –1.48 0.04 –0.14 –0.21 

3.0  0.75 0.02 –0.51 0.98 –0.053 –0.010 
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Table 3: Values computed using a degree-variance model (eq.(8)) with depth to 

the Bjerhammar-sphere equal to 1.56 km. Error.degree-variances from 

EGM96 used to degree 24, scaled with  α = 1.03.  Computed using Least-

Squares-Collocation with only one observation (completely equivalent to 

using eq. (3)).  

ψ 

Second order radial deriva-

tive. Altitude= 250 km.  

Eöetvöes units. 

Geoid.  

Zero altitude.  

Units m. 

Gravity anomaly.  

Zero altitude.  

Units mgal. 

0.0 0.15 2.11 13.11 

1.0 0.13 1.80 10.36 

2.0 0.08 1.23 5.33 

3.0 0.03 0.46 1.40 

4.0 –0.03 –0.04 –0.87 

5.0 –0.03 –0.32 –1.86 

6.0 –0.03 –0.43 –2.01 

7.0 –0.02 –0.41 –1.66 

8.0 –0.02 –0.30 –1.08 

 

 In Table 3 we have corresponding values obtained using the covariance function 

eq. (8), (10) and again with the same gravity gradient observation as used in Table 

1 and 2.  

 We have here calculated values with spherical distance 1.0 degree and so that 

the value for the second order radial derivative is 0.15 Eötvös. 

 Again we see the location of the first zero-crossing, which makes the function 

well suited for representing data where the contribution from EGM96 to degree 24 

has been subtracted.  

 A FORTRAN program redpmass.f for doing these or similar calculations is 

available as  http://cct.gfy.ku.dk/redpmass.f , 2010.05.20.  

 

 

4. Conclusion 

 Closed or reduced point mass or multipole functions may be used to represent 

the anomalous potential. When used regionally referring to a global gravity field 

model, the first terms must be removed or substituted by error-degree-variances. 

 For point-mass or multipole functions the terms up to the lowest degree of the 

reference potential (the global model) have here been put equal to zero. However, 

it might be possible to find (unitless) terms representing the power in the frequen-

cies which the global model have not removed, corresponding to error-degree vari-

ances.  
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 If covariance functions (corresponding to multipole base functions) are used, 

error degree-variances (scaled) may be used. This assures that the model in an ap-

propriate manner weights the regional frequencies with respect to the global model 

used.  
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