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Abstract 

 The present study investigates the problem of band-limited information within gravity 

field. Due to a finite number of measurements at the surface or in satellite altitude a band-

limitation is introduced both into the space domain and the frequency domain. Therefore, 

precaution is recommended to look for unbiasedly estimable functions of these bandlimited 

gravity field models. We propose the complementation of gravity field models by addi-

tional a priori information to obtain a complete model. The additional information is ob-

tained by the smoothness of the potential field characterized by curvature conditions for the 

contour lines expressed by the first and second Beltrami operator.  

 

 

1. Introduction  

 High spatial resolution models of the Earth’s gravity field are derived from sat-

ellite missions such as GRACE and GOCE or from so-called combined model, 

where surface gravity and altimeter information is additional assimilated. These 

models open the door for various fields of geosciences to a deeper and more pre-

cise understanding of Earth processes. However, from a mathematical point of 

view the involved communities use different languages and, more importantly, 

different ways of representing the same information. While gravity fields are, on a 

global scale, usually represented by spherical harmonics, Earth process models 

often work with geographically gridded data. Therefore, the representation in the 

frequency domain in terms of spherical harmonics has to be transferred into a grid 

space domain representation. We follow the approach of Losch et al. (2002b, a) 

and expand the truncated model by priori information. The spherical harmonics as 

base functions allow us, due to the orthogonality relations, to split up the Hilbert 

space into sub-domains. With respect to the gravity field models we divide the 

space into three sub-domains: measurement, transition and omission domain. The 

first sub-domain is mainly fixed by the real measurements (e.g. satellite-to satellite 

tracking data, gravity gradient measurements, ...). In the transition zone the infor-

mation of measurements are supported by the a priori knowledge about the 
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smoothness of the estimated potential field. This additional information prevents 

the well-known over-estimation of information content for high frequencies. And 

finally the omission domain up to infinity is dominated only by the a priori knowl-

edge about the smoothness of the potential field.  

 In this report we will recapitulate the mathematical background of the smooth-

ness conditions, elaborate the behavior and compare the results with well known 

degree variance models (Kaula, 1966; Tscherning and Rapp, 1974) and up-to-date 

GRACE and GOCE models.  

 This paper is organized as follows. We will first summarize the special features 

of the spherical harmonics with regard to the notation in a Hilbert space HΓ (Sect. 

2). The Parseval theorem gives us a direct connection between the norm in the Hil-

bert space and the degree variances. In sect. 3 we will introduce the first and sec-

ond Beltrami differential operators, as indicators for the smoothness of vector 

fields by invariant scalar functions on a surface. We will specialize these operators 

for the sphere and show that the second Beltrami operator has the Laplace spherical 

harmonics as eigenfunctions (Sect. 4). With respect to the Sobolev conditions we 

will then be able to formulate bounds for the decrease of the degree variances with 

increasing degree of the spherical harmonics (Sect. 5). By means of Green’s first 

formula we can extend this relation between the Beltrami operators and the spheri-

cal harmonics also for the first Beltrami operator. As the key result of sect. 5, we 

will obtain smoothness conditions in terms of upper bounds of the degree vari-

ances. At the end we will demonstrate the excellent agreement of the mathematical 

model with reality, especially with respect to the first analysis of real GOCE data 

by the time-wise approach (Pail et al., 2010; Schuh et al., 2010).  

 

 

2. Potential field and spherical harmonics  

 The potential  V  in the exterior of the sphere satisfies the Laplace equation, 

which is given in Euclidian coordinates by  

 
2 2 2

2 2 2
Δ 0

∂ ∂ ∂
= + + =
∂ ∂ ∂

V V V
V

x y z
 (1) 

and which can be rewritten in term of spherical coordinates with  

 

sin cos

sinsin

cos

È ˘ È ˘
Í ˙ Í ˙= =
Í ˙ Í ˙
Î ˚ Î ˚

x r λ

y r λ

z r

J

J

x  (2) 

(r  radius vector,  ϑ polar distance,  λ geocentric longitude) in the form (Heiskanen 

and Moritz, 2000, eq. (1-41ʹ))  
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2 2 2

2

2 2 2 2

1
Δ 2 cot 0

sin

∂ ∂ ∂ ∂ ∂
= + + + + =

∂ ∂∂ ∂ ∂

V V V V V
V r r

rr λ
J

JJ J
. (3) 

 The solution of the Laplace equation can be obtained by a separation ansatz 

(Heiskanen and Moritz (2000), p. 20-21) and results in the spherical harmonics. 

Every harmonic function outside the sphere  (r > 1)  can be represented by  

 

1

0 0

1
( , , ) (cos )cos (cos )sin

m m m m

m

V r λ c P mλ s P mλ
r

+•

= =

Ê ˆ È ˘= +Á ˜ Î ˚Ë ¯Â Â
� �

� � � �

�

J J J . (4) 

m
P
�

 denotes the fully normalized Legendre polynomials depending on the har-

monic degree  ℓ  and order m with the corresponding harmonic coefficients 
m

c
�

 

and 
m

s
�

. The individual functions  

 ( ) ( ),  :  cos cos
m m

C λ P mλ=
� �

ϑ ϑ  (5) 

 ( ) ( ),  :  cos sin
m m

S λ P mλ=
� �

ϑ ϑ  (6) 

forms a complete set of orthonormal base functions on the unit sphere Γ. Their 

behavior can be summarized by  

 
2 2

Γ Γ

( , ) ( , ) 4È ˘ È ˘= =Î ˚ Î ˚ÚÚ ÚÚm m
C λ dσ S λ dσ π
� �

ϑ ϑ  

 
Γ

Γ

( , ) ( , ) 0

   if    or    or both
( , ) ( , ) 0

¸=
Ô
Ô

π π˝
= Ô

Ǫ̂

ÚÚ

ÚÚ

m sr

m sr

C λ C λ dσ

s r m

S λ S λ dσ

�

�

�

ϑ ϑ

ϑ ϑ

 (7) 

 

Γ

( , ) ( , ) 0   in any case=ÚÚ m m
C λ S λ dσ
� �

ϑ ϑ  

where we use the abbreviations  
2

0 0

Γ

:

= =

=ÚÚ Ú Ú
π π

λ ϑ

for the integral over the unit sphere 

Γ and : sindσ d dλ= ϑ ϑ  for the surface element on the unit sphere.  

2.1 Hilbert space of functions on the unit sphere Γ  

 Let ( , )u λϑ  and ( , )v λϑ  be functions of the inner product space 2

Γ
�  on the unit 

sphere  Γ.  The inner product is defined by  

 ( ) ( ) ( ) ( )
Γ

Γ

, , , : , ,= ÚÚu λ v λ u λ v λ dσϑ ϑ ϑ ϑ
�

 (8) 
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and the norm by  

 ( ) ( )
Γ

1/2
2

Γ

, : , .
Ï ¸È ˘= Î ˚Ì ˝
Ó ˛
ÚÚu λ u λ dσϑ ϑ

�
 (9) 

We assume that the function is square integrable, that is,  

 ( ) 2

Γ

,È ˘ <•Î ˚ÚÚ u λ dσϑ  (10) 

As mentioned already in the last section the functions ( , )
m

C λ
�

ϑ  and ( , )
m

S λ
�

ϑ  

form a complete orthogonal basis. A complete inner product space is called a Hil-

bert space 
Γ

�  (Meissl (1975), p. 36-38), and shortly characterized by  

 ( )Γ 2
: { : , | }= Æ Œu λ uϑ o� � . (11) 

Because of the completeness of the basis any function ( ),u λJ  on the sphere can be 

represented by the base functions ( , )
m

C λ
�

ϑ  and ( , )
m

S λ
�

ϑ  in the form  

 

0 0

( , ) ( , ) ( , ) .
m m m m

m

u λ c C λ s S λ

•

= =

È ˘= +Î ˚ÂÂ
�

� � � �

�

ϑ ϑ ϑ  (12) 

2.2 Parseval equation for spherical harmonics  

 The application of orthogonality relations (7) allows us now to reformulate the 

norm (9) of an arbitrary function ( ),u λJ  on the sphere Γ. If we introduce (12) in 

(9) we get  

 
Γ

2

2

0 0Γ

( , ) ( , ) ( , ) .

•

= =

È ˘
È ˘= +Í ˙Î ˚

Í ˙Î ˚
ÂÂÚÚ m m m m

m

u λ c C λ s S λ dσ

�

� � � �

�

ϑ ϑ ϑ
�

 (13) 

 Solving the quadratic form, interchanging the sums with the integrals and con-

sidering the orthogonality relations (7) all mixed terms vanish and we obtain  

 
Γ

2 2 2

0 0

( , ) 4 ,

•

= =

È ˘= +Î ˚ÂÂ m m

m

u λ π c s

�

� �

�

ϑ
�

 (14) 

which is denoted as Parseval equation. Often the summation over the order  m  is 

summarized in degree variances  

 2 2 2

0

: ,
m m

m

σ c s

=

È ˘= +Î ˚Â
�

� � �
 (15) 

Thus, the Parseval equation can be written in compact form as  
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Γ

2 2

0

( , ) 4 ,

•

=

= Âu λ π σ
�

�

ϑ
�

 (16) 

 

3. Beltrami differential operators on the sphere  

 Let ( ),u λ constJ =  be an equi-potential line on the continuous surface  Φ.  The 

coefficients of Gauss’s first fundamental form  

 2 2 2
2ds Ed Fd dλ Gdλ= + +ϑ ϑ  (17) 

with respect to position vector ( , )λϑx  and the surface parameters ϑ  and λ are 

defined by (Kreyszig, 1993, Sec. 9.6, p. 543) 

 

2 2 2

2 2 2

2 2 2

2 2 2

( , ) :

( , ) :

( , ) :

λ λ λ λ

λ λ λ λ λ

x y z
Ε x y z

x x y y z z
F x x y y z z

λ λ λ

x y z
G x y z

λ λ λ

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ= = + + = + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= = + + = + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ= = + + = + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

x x

x x

x x

 (18) 

with ( , )λ
∂

=
∂

ϑ
ϑ

ϑ

x

x  and where ◊ ◊( , )  denote the scalar product of vectors. x
ϑ

 stands 

for ( , )
x

λ
∂

∂
ϑ

ϑ
 and similarly we will use u

ϑ
 as an abbreviation for ( , )

u
λ

∂

∂
ϑ

ϑ
. The 

same conventions are also introduced for other parameters. The square of the 

length of the normal vector is defined by  

 2 2
W EG F= - . (19) 

Let ( , )u λϑ  be a differentiable function on  Φ,  then the tangent vector is given by  

 λ λ

u

u u

W

-

=

ϑ ϑ
x x

t . (20) 

and the square of the norm of this vector  

 
2

Φ2

2
( , ) :

- +
= = = —

λ λ λ

u u u

Eu Fu u Gu
u

W

ϑ
t t t . (21) 

defines Beltrami’s first differential operator 
Φ

— u , which is a parameter invariant 

scalar function on the surface  Φ  (Strubecker (1958), p. 90). This quantity is con-

nected with the gradient vector 
Φ

grad u  through  
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Φ 2

( ) ( )- + -

=grad λ λ
Gu Fu Eu Fu

u

W

ϑ ϑ ϑ ϑx x

, (22) 

which defines a vector tangential to the surface Φ, pointing in the direction of the 

deepest descent, orthogonal to the equi-potential line. The squared length of the 

gradient vector is equivalent to Beltrami’s first differential operator applied to  u  

 ( )2

Φ Φ Φ Φ
,  = =—grad grad gradu u u u . (23) 

If the function ( , )u λϑ  is twice continuously differentiable then  

 
Φ Φ

1
: div

È ˘- -∂ ∂Ê ˆ Ê ˆD = = +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂Î ˚
grad λ λ

Gu Fu Eu Εu
u u

W W λ W

ϑ ϑ

ϑ
 (24) 

defines Beltrami’s second differential operator 
Φ

D u , commonly denoted as 

Laplace-Beltrami-operator. Beltrami’s differential operators are often discussed in 

connection with Green’s first formula (Kreyszig, 1993, Sec. 9.8, p. 553)  

 
Φ Φ Φ Φ

( , ) Φ ( , ) Φ

∂

= - DÚÚ Ú ÚÚgrad grad grad

B Β Β

u v d u v dβ u vd
�

v  (25) 

for two equi-potential lines ( , )u λϑ  and ( , )v λϑ . Here  B  denotes a subarea on the 

surface  Φ  and  ∂B  marks its boundary. Let  β  be the arc length along the bound-

ary and let the unit vector  ν  be tangential to the surface  Φ  and normal outward to  

B.  If we consider the case of the sphere  Γ  this formula becomes  

 
Γ Γ Γ

Γ Γ

( , ) Γ Γ= - DÚÚ ÚÚgrad gradu v d u vd  (26) 

(Meissl (1971), p. 12). A further specialization leads to  

 
Γ Γ Γ Γ

Γ Γ Γ

( , ) Γ Γ Γ= — = - DÚÚ ÚÚ ÚÚgrad gradu v d ud u ud , (27) 

and gives a connection between Beltrami’s first and second differential operator on 

the sphere. Introducing Gauss’s first fundamental coefficients for the sphere Γ, 

with  r = R = const.,  we get  

 2 2 2
,    0,    sin2    and   sinE R F G R W R= = = =ϑ ϑ . (28) 

Beltrami’s first differential operator (21) on the sphere  Γ  is defined by  

 
Γ 2 2

1 1

sin

∂ ∂Ê ˆ— = +Á ˜Ë ¯∂ ∂
u u

u
λR ϑ ϑ

 (29) 

and Beltrami’s second differential operator (24) can be rewritten as  
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2

Γ 2 2

1
sin

sin

Ê ˆ∂ ∂ ∂Ê ˆD = +Á ˜Á ˜Ë ¯Ë ¯∂ ∂ ∂
u u

u
R λ

ϑ
ϑ ϑϑ

. (30) 

After differentiation we get  

 
2 2

Γ 2 2 2 2 2 2

1 cot 1

sin

∂ ∂ ∂
D = + +

∂∂ ∂

u u u
u

R R R λ

ϑ

ϑϑ ϑ
. (31) 

 

 

4. Laplace-Beltrami operator and spherical harmonics  

 Starting from the Laplace equation in spherical form (3) we follow the separa-

tion approach (Heiskanen and Moritz (2000), sec. 1-9) and split up the function 

V(r, ϑ, λ)  into a radial part f (r) and into an angular part  Y(ϑ, λ)  

 ( ) ( ) ( ), , ,V r λ f r Y λ=ϑ ϑ  (32) 

This separation ansatz allows us now to reformulate the partial derivatives of (3) 

and we end up with  

 ( ) ( ) ( ) ( ) ( )2
, , , 2 ,V r λ r Y λ f r rY λ f rD = ¢¢ + ¢ +ϑ ϑ ϑ  

 
2 2

2 2 2

1
( ) ( , ) cot ( , ) ( , )

sin

Y Y Y
f r λ λ λ

λ

Ê ˆ∂ ∂ ∂
+ + +Á ˜Ë ¯∂∂ ∂

ϑ ϑ ϑ ϑ
ϑϑ ϑ

, (33) 

where the primes denote differentiation with respect to the argument  r.  Using the 

Laplace condition ( , , ) 0V r λD =ϑ , multiplying (33) by ( ) ( , ) 0f r Y λ =ϑ  allows for 

a separation into the radial dependent part on the left side and into the angular de-

pendent part on the right side  

 ( )21
( ( ) 2 ( )

( )
r f r rf r

f r
+ =¢¢ ¢  

 
2 2

2 2 2

1 1
( , ) cot ( , ) ( , )

( , ) sin

Y Y Y
λ λ λ

Y λ λ

Ê ˆ∂ ∂ ∂
= - + +Á ˜Ë ¯∂∂ ∂

ϑ ϑ ϑ ϑ
ϑ ϑϑ ϑ

. (34) 

This differential equation can only be satisfied if both sides are constant. Choosing 

this constant by ( 1)-� �  we obtain for the left hand side the Euler-Cauchy equation 

(Kreyszig, 1993, Sec. 2.6, p. 73)  

 2 ( ) 2 ( ) ( 1) ( ) 0r f r rf r f r+ - - =¢¢ ¢
� � �

� �  (35) 

and for the right hand side  
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2 2

2 2 2

1
( , ) cot ( , ) ( , ) ( 1) ( , ) 0

sin

Y Y Y
λ λ λ Υ λ

λ

∂ ∂ ∂
+ + + - =

∂∂ ∂

� � �

�
� �ϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ
. (36) 

The first three terms of this second order differential equation (36) can be rewritten 

in terms of Beltrami’s second differential operator (31) as  

 
2 2

2

Γ 2 2 2

1
( , ) ( , ) cot ( , ) ( , )

sin

∂ ∂ ∂
D = + +

∂∂ ∂

Y Y Y
R Y λ λ λ λ

λ

� � �

�
ϑ ϑ ϑ ϑ ϑ

ϑϑ ϑ
. (37) 

Using this abbreviation, equation (36) becomes  

 
Γ 2

1
( , ) ( 1) ( , )D = - +Y λ Y λ

R
� �

� �ϑ ϑ  (38) 

and shows that the Laplace-Beltrami operator has as eigenfunctions the Laplace 

surface spherical harmonics with the eigenvalues  

 
2

1
( 1)λ

R
= - +

�
� �  (39) 

(cf. Helfrich (2007), p. 46). In contrast to Laplace’s equation  ΔV = 0  (cf. eq. (1) or 

(3)), which defines the behavior outside the sphere, the Laplace-Beltrami operator 

Γ
( , )D Y λ

�
ϑ  characterizes the behavior of  V  on the surface of the sphere Γ.  

 

 

5. Smoothness of a potential field  

 Let ( , )u λϑ  be a continuous function on the sphere Γ, which is twice continu-

ously differentiable at least in the weak sense, that is the derivation ( )v s  of the 

function ( )u s  with ( , )s s λ= ϑ  satisfies the Sobolev-condition  

 ( ) ( ) ( ) ( )= -¢Ú Ú
b b

a a

u s φ s ds v s φ s ds  (40) 

for every continuous function ( ) (Γ)Œφ s C  on the sphere  Γ.  The metric is defined 

by the inner product (8) and the norm by (9), respectively. Let us assume that the 

function ( , )u λϑ  is square integrable, that is,  

 [ ]
Γ

2 2

Γ

( , ) ( , )= <•ÚÚu λ u λ dσϑ ϑ
�

, (41) 

which means that the function ( , )u λϑ  is defined in the Hilbert space 
Γ

� . As 

elaborated in Sect. 2.2 the Parseval equation  
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Γ

2 2

0

( , ) 4

•

=

= Âu λ π σ
�

�

ϑ
�

 (16) 

gives us a direct connection between the norm of the function and the degree vari-

ances. A finite norm immediately implies that the sum of the degree variances con-

verges to a finite value, i.e.  

 2

0

4π σ

•

=

<•Â �

�

. (42) 

It is well known that the series 

0

1
•

=

Â
�

�
 diverges, but 

1

0

1

ε

•

+

=

Â
�

�

 converges for  ε > 0. 

 Therefore, the condition (42) is equvalent to  

 2 c

σ <
�

�
. (43) 

and gives a requirement for the degree variances with respect to a finite norm 

Γ

2
( , )u λϑ

�
. To get a smoother function we can define further restrictions on the 

function. In general the Hilbert space 1

Γ
�  for function with existing (weak) deriva-

tives is defined by the inner product  

 1

Γ Γ Γ

( , ),  ( , ) : ( , ),  ( , λ) ( , ),  ( , λ)= +u λ v λ u λ v Du λ Dvϑ ϑ ϑ ϑ ϑ ϑ
� � �

 (44) 

and the norm  

 1

Γ Γ Γ

( , ) ( , ) ( , )= +u λ u λ Du λϑ ϑ ϑ
� � �

 (45) 

where  D  defines a differential operator for the first derivative. The same can be 

done for arbitrary highly derivatives. This way, the spaces become smoother and 

smoother if we define the inner product by  

 ( )
ΓΓ

( ) ( )

0

( , ),  ( , ) ( , ),  ( , )

=

=Âp

p
k k

k

u λ v λ D u λ D v λϑ ϑ ϑ ϑ
� �

 (46) 

and the norm by 

 ( )
Γ Γ

( )

0

( , ) ( , )

=

=Âp

p
k

k

u λ D u λϑ ϑ
� �

 (47) 

where ( )k
D  defines a differential operator for the th

k  derivative.  

 In the following we will focus our attention to the Hilbert spaces 1

Γ
�  and 2

Γ
� . 
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Let us start with an example of the Hilbert space 2

Γ
�  on the sphere. Here, the norm 

of the second derivative and therefore the norm of Beltrami’s second differential 

operator elaborated in Sect. 3 is of special interest. Recalling the particular property 

of Beltrami’s second differential operator with respect to the surface spherical har-

monics as eigenfunctions (cf. Sect. 4) we are able to compute the norm of the sec-

ond derivatives, which are responsible for the smoothness of the functions and 

dominant over all other terms in the sum of (47).  

 Taking the norm of the Laplace-Beltrami operator (31) and using (38) we get  

 
Γ

Γ Γ

2 2

2

Γ Γ 2

0 0

1
( , ) ( , ) ( 1) ( , )

• •

= =

D = D = - + =Â ÂY λ Y λ Y λ
R

� �

� �

� �ϑ ϑ ϑ
�

� �

 

 

2

2

0Γ

1
( 1) ( , )

•

=

È ˘
= - +Í ˙

Í ˙Î ˚
ÂÚÚ Y λ dσ

R
�

�

� � ϑ  (48) 

Interchanging summation and integration and recalling that all mixed terms vanish 

due to the orthogonality relations (7) we obtain  

 [ ]
Γ

2
2

2

Γ 2

0 Γ

1
( , ) ( 1) ( , )

•

=

Ê ˆD = + =Á ˜Ë ¯Â ÚÚY λ Υ λ dσ
R

�

�

� �ϑ ϑ
�

 

 ( )
2 2

4 2

0

4 1
( 1)

π
σ

R R

•

=

= - +Â �

�

� � . (49) 

Requiring a finite norm of the Laplace-Beltrami operator  

 
2

Γ
( , )D <•Y λϑ  (50) 

is equivalent to the constraint  

 4 2

0

σ

•

=

<•Â �

�

�  (51) 

and means that the series must converge. We employ the same argument as before 

regarding the convergence of an infinite series 
1

0

1

ε

•

+

=

Â
�

�

 with  ε > 0 (cf. (43)). This 

yields the condition  

 4 2 c

σ <
�

�
�

 (52) 
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for the behavior of the degree variances 2
σ
�

, if we look for functions in the Hilbert 

space 2

Γ
�  with squared integrable second derivative.  

 Green’s first formula specialized for the whole sphere (28) opens up the possi-

bility to interpret the mixed inner product  

 ( )Γ Γ Γ

Γ Γ

( , ) ( , ) Γ ( , ),   ( , ) ΓD = -ÚÚ ÚÚ grad gradY λ Y λ d Y λ Y λ dϑ ϑ ϑ ϑ  (53) 

as an extended norm with respect to the scalar product of the tangent vector 

Γ
grad u . As already stated in (28) Green’s first formula gives the connection be-

tween Beltrami’s first and second differential operator and the squared length of 

the tangential vectors 
u
t  and 

Γ
grad u , respectively. This allows us to reformulate 

the inner product (53) as a condition which guarantees the convergence of the first 

derivatives of the function ( , )u λϑ  on the sphere Γ. Again we use the direct con-

nection between Beltrami’s second differential operator and the eigenfunctions 

(38) to write  

 
Γ 2

0Γ Γ

1
( , ) ( , ) Γ ( 1) ( , ) ( , ) Γ

•

=

D = - - +ÂÚÚ ÚÚY λ Y λ d Y λ Y λ d
R

� �

�

� �ϑ ϑ ϑ ϑ . (54) 

Interchanging summation and integration, and using the orthogonality relations (7) 

with respect to the Parseval theorem (16) yields  

 2

Γ 2

0Γ

4
( , ) ( , ) Γ ( 1)

•

=

D = +ÂÚÚ
π

Y λ Y λ d σ
R

�

�

� �ϑ ϑ . (55) 

Combining (53) and (55) we get 

 ( ) 2

Γ Γ Γ 2

0Γ Γ

4
( , ),   ( , ) Γ ( , ) Γ ( 1)

•

=

= - — = +ÂÚÚ ÚÚgrad grad
π

Y λ Y λ d Y λ d σ
R

�

�

� �ϑ ϑ ϑ  (56) 

note the close connection between the squared length of the gradient vector i.e. of 

Beltrami’s first differential operator, and the degree variances. The condition for a 

finite norm of Beltrami’s first operator on the sphere reads  

 2 2 2

3
    

c c

σ σ< fi <
� �

�
� �

. (57) 

Table 1 provides a compact summary of the key results of this section in which we 

have elaborated the relationship between smoothness of a function ( , )u λϑ , repre-

sented by the base functions ( , )Y λϑ  on the sphere Γ, and the degree variances 2
σ
�

.  
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Table 1: Relation between Hilbert space, smoothness and size of the degree vari-

ances  

Hilbert space smoothness constraints degree variances 

Γ

( , )u λϑ
�

 function ( )2
Γ

( , ) Γ <•ÚÚ Y λ dϑ  2

1

c

σ <
�

�

 

1

Γ
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�

 1st derivative ( )2Γ

Γ

( , ) Γ <•ÚÚ grad Y λ dϑ  2

3

c

σ <
�

�

 

2

Γ

( , )u λϑ
�

 2st derivative ( )2Γ

Γ

( , ) ΓD <•ÚÚ Y λ dϑ  2

5

c

σ <
�

�
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Fig. 1: Comparison of degree variances from model computations (Kaula, Tschening-

Rapp) and up-to-date gravity field models from measurements ITG-GRACE2010s 

and EGM2008 (ICGEM, 2010) in comparison with an unconstrained (only polar 

gap regularization) internal version of the ESA-GOCE-HPF model GO CO�S 

EGM TIM 2i (Pail et al., 2010).  

 

 

6. Benefit of the smoothness condition and conclusions  

 Prior information about the smoothness of the potential field, obtained for in-

stance from the comparison with measured surface or satellite data, allows us to 

restrict the mathematical model to satisfy certain smoothness conditions. For the 

actual behavior of the Earth’s gravity field many studies confirm Kaula’s rule of 

thumb  
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σ
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+
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+

�
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 (58) 

which was elaborated in an extensive study of gravity anomalies (Kaula (1966),  

1 

p. 98). Studies performed by Tscherning and Rapp (1974) confirm the 3
1/�  behav-

ior of the degree variances given by  

 
2

2

( 1)( 2)( )

R A
σ

B
=

- - -

�
� � �

 (59) 

where  R  denotes the radius of the Bjerhammar sphere, and  A  and  B  are empiri-

cal constants determined from gravity anomaly data.  

 Figure 1 summarizes the degree variances of up-to-date global gravity fields (cf. 

e.g. ICGEM (2010)) derived from GRACE and combined models, where additional 

data like surface gravity data and satellite altimetry data are assimilated (ICGEM, 

2010) and GOCE models (Pail et al., 2010). A comparison with the smoothness 

conditions in Tab. 1 represented by Kaula’s rule shows now, that the behavior of 

the Earth’s gravity field corresponds to the smoothness conditions of the Hilbert 

space 1

Γ
� , where the norm of the first derivative is finite.  

 Smoothness considerations can be utilized in the modeling process in different 

ways. As deterministic approach by introducing hybrid norms (Tikhonov and Ar-

senin, 1977, Sect. III,p. 95) or restrictions to the upper limit of the parameters 

(Roese-Koerner, 2009) and as stochastic approaches by collocation (Moritz, 1980) 

and constructions of tailored covariance functions (Arabelos et al., 2007).  

 Dedication: To Dimitrios Arabelos, with whom I had the pleasure of collabo-

rating in some projects (GEOMED, MANICORAL, CIGAR, E2mGal) and to dis-

cuss many topics, especially with respect to the GOCE mission and the design of 

tailored covariance functions for the collocation approach. Thank you for these 

precious and fruitful discussions and your extraordinary research impacts.  

 

 

References  

Arabelos, D., Forsberg, R., and Tscherning, C. (2007). On the a priori estimation of collo-

cation error covariance functions: a feasibility study. Geophys. J. Int.  

Heiskanen, W. and Moritz, H. (2000). Physical Geodesy. Institute of Physical Geodesy, 

Technical University, Graz. Corrected reprint of the original edition by W.H. Freeman 

and Company, San Franzisco, 1967.  

Helfrich, H.-P. (2007). Approximationsverfahren in der Geodäsie. Vorlesungsskriptum. 

Mathematisches Seminar der Landwirtschaftlichen Fakultt, Universit¨at Bonn, 

http://www.msl.unibonn.de/vorlesung/vermessung/skripte/Approximationstheorie/appr



250 W.-D. Schuh. S. Becker 

 

ox.pdf (zuletzt besucht: 7/2010).  

ICGEM (2010). International center for global earth models. GeoForschungsZentrum Pots-

dam (GFZ), http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html.  

Kaula, W. (1966). Theory of Satellite Geodesy. Blaisdell Publ. Comp., Massachusetts -

Toronto -London.  

Kreyszig, E. (1993). Advanced engineering mathematics. John Wiley & Sons, seventh edi-

tion.  

Losch, M., Sloyan, B., Schöter, J., and Sneeuw, N. (2002a). Box inverse models, altimetry 

and the geoid: problems with the omission error. J. Geophys. Res., 107 (C7) 

10.1029/2001JC000855.  

Losch, M., Redler, R., and Schröter, J. (2002b). Estimating a mean ocean state from hydro-

graphy and sea-surface height data with a nonlinear inverse section model: Twin ex-

periments with a synthetic dataset. Journal of Physical Oceanography, 32(7), 2096–

2112.  

Meissl, P. (1971). A study of covariance functions related to the earth’s disturbing poten-

tial. Reports of the Department of Geodetic Science. Ohio State University (OSU), 

Ohio. No. 151.  

Meissl, P. (1975). Elements of functional analysis. In B. Brosowski and E. Martensen, edi-

tors, Methoden und Verfahren der mathematischen Physik, volume 12, pages 19–78, 

Mannheim -Wien -Z¨urich. Bibliographisches Institut.  

Moritz, H. (1980). Advanced Physical Geodesy. Wichmann, Karlsruhe.  

Pail, R., Goiginger, H., Mayerhofer, R., Schuh, W.-D., Brockmann, J., Krasbutter, I., Höck, 

E., and Fecher, T. (2010). GOCE gravity field model derived from orbit and gradiome-

try data applying the time-wise approch. In ESA Living Planet Symposium Bergen, 

Proceedings. ESA-SP-686 (CD-ROM).  

Roese-Koerner, L. (2009). Quadratische Programmierung mit Ungleichungen als Restrik-

tionen. Master’s thesis, Professur für Theoretische Geodäsie, Universität Bonn.  

Schuh, W.-D., Brockmann, J., Krasbutter, I., and Pail, R. (2010). Refinement of the sto-

chastic model of GOCE scientific data and its effect on the in-situ gravity field solu-

tion. In ESA Living Planet Symposium Bergen, Proceedings. ESA-SP-686 (CD-ROM).  

Strubecker, K. (1958). Differentialgeometrie II, Theorie der Flchenmetrik. Sammlung Gö-

schen, Band 1179/1179a. Walter de Gruyter & Co, Berlin.  

Tikhonov, A. and Arsenin, V. (1977). Solution of ill-posed problems. Winston & Sons.  

Tscherning, C. and Rapp, R. (1974). Closed covariance expressions for gravity anomalies, 

geoid undulations, and deflections of the vertical implied by anomaly degree variance 

models. Reports of the Department of Geodetic Science. Ohio State University (OSU), 

Ohio. No. 208.  


