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Abstract 

 We use the well known statistical and data-adaptive method of the principal compo-

nents/empirical orthogonal functions and its generalization, the multichannel singular spec-

trum analysis, to study the GRACE-observed mass variations in North America from high 

temporal resolution gravity field solutions. Both methods are able to extract the main mass 

variations, i.e., the mass increase in Hudson Bay, the mass decrease in the Alaskan glaciers 

and Greenland, and the annual hydrology cycle. Some peculiarities of the use of the or-

thogonal base functions, such as possible distortions in the orthogonal patterns, as well as 

the inference of the statistical significance of the extracted variability are discussed. 

 

 

1. Introduction 

 The Gravity Recovery and Climate Experiment (GRACE) satellite mission (Ta-

pley et al., 2004) operated by NASA and the German Aerospace Center (DLR) 

provides Earth gravity field solutions on a regular basis since March 2002 with a 

monthly and higher temporal resolution. These time series of gravity changes inte-

grated in a vertical column are analyzed to infer mass variations in the interior, on 

the surface, or in the close exterior of the Earth such as the cycle of continental 

water storage, snow accumulation and melting, variations in the mass of the polar 

ice sheets and mountain glaciers, variations in the atmospheric surface pressure and 

ocean bottom pressure, and postglacial rebound (Wahr and Davis, 2002). 

 The conventional method that is applied in analyses of the GRACE-observed 

mass variations both on a global and regional scale is least-squares fitting to the 

time series of the spherical harmonic coefficients or the grid points of maps of 

variability, which provides estimates of the amplitude and phase of the annual and 

semi-annual cycles and possibly a trend. It takes into account GRACE errors and 

can handle discontinuous time series. Alternatively, the methods that are based on 

the empirical orthogonal functions can be used to derive changes in the periodic 

cycles as well as inter- and intra-annual mass variations. In this paper, we study 

and compare the method of the principal component/empirical orthogonal func-

tions (PC/EOF) analysis and the generalization of this method, namely the mul-
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tichannel singular spectrum analysis (MSSA). The PC/EOF analysis decomposes 

times series of single scalar geophysical fields in orthogonal spatial patterns and 

their time evolution. Examples include, but are not limited to, the modelling of 

inter-annual changes and long-term trends in sea level (Woolf et al., 2003), global 

sea surface temperature (Robertson and Mechoso, 1998), and coupled patterns of 

sea surface temperature and radar satellite altimetry sea surface heights (Leuliette 

and Wahr, 1999). In relation to GRACE, the PC/EOF analysis has been applied by 

Viron et al. (2006) to study global climate signals extracted from the GRACE-

observed mass changes. Chambers (2006) analyzed the main signals of the sea-

sonal steric sea level variations and Schrama et al. (2007) used PC/EOF to reduce 

the noise in the GRACE gravity field solutions. Rangelova et al. (2007) studied 

long-term and inter-annual variations in addition to the annual hydrology cycle in 

North America.  

 MSSA originates from the studies of the dynamics of chaotic systems using 

noise contaminated data but has also been applied in oceanography, meteorology 

and climate studies for analyzing the spatio-temporal variability of scalar fields 

(Ghil et al., 2002; Keppenne and Ghil, 1993; Plaut and Vautard, 1994; Jiang et al., 

1995; Allen and Robertson, 1996). Vianna et al. (2007) applied the singular spec-

trum analysis, to which MSSA reduces in the case of a single time series, to derive 

the mean dynamic topography from GRACE data. The main difference with the 

PC/EOF method is that time-lagged fields are decomposed in orthogonal spatio-

temporal patterns and principal component time series using the spatio-temporal 

covariance information in the data. In the ocean studies, MSSA is equivalent to the 

extended EOF analysis. The only difference is the number of time lags, which in 

the extended EOFs are much less compared to MSSA. The traditional PC/EOF 

analysis is a special case of MSSA when no time lags are introduced. 

 The main advantage of the use of both PC/EOF and MSSA stems from the fact 

that as non-parametric methods with data-dependent base functions they adapt to 

the analyzed data sets thus allowing for extraction of modulated periodic oscilla-

tions (Vautard and Ghil, 1989) while efficiently separating these signals from the 

random data errors. The main disadvantage is that due to the imposed orthogonality 

of the base functions distortions in the extracted patterns are possible. Moreover, 

mixing of the spectral modes can be encountered usually in short data series. Both 

PC/EOF and MSSA require uninterrupted data in space and time. In the case of 

missing GRACE gravity field solutions, data gaps can be bridged by least-squares 

interpolation. 

 We apply both PC/EOF and MSSA to the grids of continental water mass varia-

tions in North America derived from weekly GRACE gravity field data. Although 

these fields have low spatial resolution (approximately 700 km half-wavelength), 

the constructed uninterrupted time series contains 313 epochs and spans six com-

plete years which allows us to demonstrate the efficiency of both methods. 
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2. Principal component/Empirical orthogonal functions analysis  

 We present the theory of the PC/EOF analysis using equations and definitions 

given by Jolliffe (2002). Gridded or scattered data are organized in a (n × p) matrix 

D,  where n is the number of observations (time epochs) and p is the number of 

variables (data points). The data matrix  D  is decomposed by singular value de-

composition as follows: 

 1/2 T

D D D
=D U Λ E , (1) 

where  UD  and  ED  are (n × n) and (p × p) orthonormal matrices. The column vec-

tors of  ED  define the EOF loading patterns (also called spatial amplitudes).  ΛD  is 

a diagonal matrix of rank ),min( pnr ≤  which contains the spectrum (eigen-

values) ,  1,..., .
i
λ i r=  The principal component (PC) time series are computed 

from the column vectors of PD where 

 2/1

DDD
ΛUP =  (2) 

 The approximated signal variability is the best rank m approximation of D using 

the selected m PCs, as follows: 

 ( )T

DDmm
EPD =

ˆ . (3) 

If the PC/EOF analysis is applied with time-centered data, i.e., the mean from each 

column of the data matrix  D  is removed, the diagonal elements of the matrix 
D

Λ  

are the variances explained by each principal component in terms of the percentage 

of the total data variance. Usually, the orders of the PCs define their significance 

and the first several modes represent the dominant signal variability in the data.  

 According to Benzi et al. (1997), a pertinent weakness of PC/EOF is that the 

orthogonal modes, in which the data are decomposed, do not necessarily represent 

physical variability. When physical processes are analyzed, rotated PC/EOF should 

be used in order to properly represent the physical relations in the data. In addition, 

rotation detects undesirable effects (Richman, 1985), such as domain shape de-

pendence, i.e., the signal changes with the change in the domain shape and size. A 

commonly applied algorithm is the varimax rotation of either EOF patterns or PC 

time series (Preisendorfer, 1988). Rotation maximizes the variance of the squared 

covariances between each rotated principal component and each of the original 

principal component time series. This results in few large loading patterns and 

many close to zero patterns. Therefore, rotation helps one to discriminate among 

the modes and simplifies the interpretation while revealing the physical variability 

in the data. As demonstrated by Rangelova and Sideris (2008), the varimax rotation 

of the signal modes facilitated the interpretation of the GRACE-derived geoid vari-

ability in North America. 

 In addition to the rotation, the methods for selecting the significant principal 
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components in the approximation step are often a subject of discussion. Generally, 

three groups of methods exist. The first group includes the methods based on the 

amount of the data variance explained. The ad hoc rule of thumb is to retain the 

PCs that explain at least 70% of the data variance (Valle et al., 1999). Another 

method is North’s rule of thumb (North et al., 1982) which states that if the error of 

the eigen-value is larger than or comparable with the difference between two adja-

cent eigen-values then it is unlikely that these eigen-values represent separate 

modes. A very simple method is the inspection of the levering point of the spec-

trum where the rapid decline of the signals part of the spectrum transitions to the 

gradually decreasing part of the noise. The second group includes the time history 

methods that test the principal component time series for being random samples of 

a white noise process. One commonly applied method is the Kolmogorov-Smirnov 

(KS2) rule given by Preisendorfer (1988). The third group comprises the space-

map methods based on the comparison of the EOF patterns with known geophysi-

cal patterns of variability.  

 

 

3. Multichannel singular spectrum analysis 

 The main steps of the MSSA computational procedure are given following Al-

len and Robertson (1996): 

1. For a data set )( ,1;,1: LlTttl
d

==

d , which consists of  T  observations (time epochs) 

each with  L  variables (channels) and chosen  M  time lags (a lag-window), 

form a data trajectory matrix  D  using  M  lagged copies of the channels 
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 where 1+−= MT�  is the number of the overlapping views of the series for 

each point in the channel. Form the trajectory matrix  D  of size )( ML� × , as 

follows: 

 ( )
L

DDDD …

21
=  (5) 

2. Apply singular value decomposition of  D,  as follows: 

 ),max(,2/1
LM�

T

DDD
== ηη EΛPD  (6) 

 where η  is a normalization factor. The matrix 
D

P  contains � orthonormal 

vectors called spatio-temporal principal components that are also eigen-vectors 
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of the lag-covariance matrix ( ) TP

D
LM DDC

1)( −

= . The matrix 
D

E  contains M 

orthonormal vectors called spatio-temporal empirical orthogonal functions, 

also eigen-vectors of the lag-covariance matrix ( ) DDC
TE

D
�

1)( −

= . The diago-

nal entries of the eigen-spectrum 
D

E

D

T

DD

P

D

T

DD
ECEPCPΛ
)()(

==  are proportional 

to the data variance in the PCs (EOFs). 

3. Filter out the spatiotemporal EOFs of no interest: 

 T

DD
EKIDED )( −=′  (7) 

where  K  is a diagonal matrix with 0=
ii

K  if the ith EOF is retained and 

1=
ii

K  if the ith EOF is filtered out. ( )
L

DDDD ′′′=′ �

21
 contains the fil-

tered augmented time series for all channels. 

4. Reconstruct the filtered series for each channel by averaging along the diago-

nals of Ll
l

,1, =′D  as shown by Golyandina et al. (2001, p.17). 

 In order to study the capabilities of the MSSA to extract annual variations and a 

trend from relatively short spatiotemporal series, we simulated a series of 60 ep-

ochs of monthly water mass variations using the annual amplitude and phase of the 

GLDAS/Noah model (Rodell et al, 2004) in North America and the ICE-5G (VM2) 

postglacial rebound model of Peltier (2004). Random noise was simulated from the 

residuals in the weighted least-squares fit to the GRACE-derived monthly water 

mass variations. The residuals are spatially correlated due to the GRACE system 

and processing of the GRACE measurements, post-processing smoothing of the 

data errors and the residual geophysical signals not accounted for by the least-

squares fit. 

 The trend generates an eigen-pair of modes which explain equal amounts of the 

data variance (Figure 1a). It requires the largest possible lag-window, which how-

ever cannot exceed a half of the length of the time series when the number of the 

overlapping views is minimal. Ideally, each of the modes of the annual cycle 

should also explain 50% of the data variance. To extract this periodic oscillation, 

the size of the lag-window should be at least double the wavelength of the periodic 

signal. At the same time, the number of the overlapping views, which determines 

the statistical significance of the extracted oscillation, should be large enough in 

order to decrease the dependence on the lag-window (observed on Figure 1b) and 

to ensure good spatio-temporal localization in the reconstruction step. Therefore, 

the requirements for extracting periodic oscillations and trend-like variations are 

conflicting with each other and a good balance cannot be achieved for the rela-

tively short GRACE series, in which case the trend and periodic modes tend to mix 

(Figure 1c). As a result, the trend PC time series show oscillations while the peri-

odic PC time series show an apparent trend. If correlated noise in space and time 

(of geophysical origin) is present in the data, “non-genuine” oscillations can be 

generated in the low frequency band of the eigen-spectrum in the presence of the 
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trend and can mistakenly be taken as true signals (Allen and Robertson, 1996). The 

correlated GRACE noise can further enhance the spectral mixing of the trend and 

annual modes (Figure 1d). If the annual hydrology cycle is of interest, any known 

trends should be removed prior the analysis of the GRACE time series.  

 

 

Figure 1: Eigen-spectra of simulated GRACE data series. The vertical axis shows the 

percentage of the data variance explained by each mode (horizontal axis) 

 

 As in the PC/EOF analysis, the significant modes can be determined upon the 

inspection of the levering point of the eigen-spectrum. However, this simple 

method is inefficient in the presence of correlated noise. The modes of true oscilla-

tions with small variances and low signal-to-noise ratio could be buried in the ei-

gen-spectrum and discarded when the significant variations are decided by the cut-

off rule. A generalisation of the Monte Carlo singular spectrum analysis algorithm 

can be used to construct a test to identify these oscillations (Allen and Robertson, 

1996). While GRACE data are subject to correlated noise in space, i.e., north-south 

stripes in the maps of the weekly mass variations, this noise is of different nature 

than the “red noise” in the geophysical systems that is also likely present in some 

form in the GRACE-observed water mass variations. The magnitudes of the 

GRACE correlated errors are largely reduced by means of the post-processing 

smoothing. Therefore, we do not study how these errors propagate in the eigen-

spectrum of the mass variations. 
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4. Data  

 We analyze a series of water mass variations Δh expressed in cm of water 

equivalent height (WEH) that are synthesized for each time epoch t and geographi-

cal location (co-latitude θ and longitude λ)  from the weekly GFZ GRACE gravity 

field solutions given by the changes (with respect to the mean) of the spherical 

harmonic cosine and sine coefficients,  ΔClm  and  ΔSlm ,  of the maximum degree l 

and order  m 30, as follows (Wahr et al., 1998): 
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 In this equation, )(cosθ
lm
P  are the fully normalized associated Legendre func-

tions of degree l and order m and 
l

W  are the weighting coefficients of a smoothing 

isotropic Gaussian filter; 
w

ρ  is the water density of 1000 kg/m3, 
ave

ρ  is the aver-

age density of the Earth, 5517 kg/m3, 
l
k  is the load Love number of degree l and 

e
a  is the mean radius of the Earth.  

 The GRACE errors are smoothed by means of a Gaussian averaging filter with 

a radius of 700 km, which roughly corresponds to the spatial resolution of the 

weekly data. The time series consists of 313 epochs between week #5 of 2004 and 

week #4 of 2010. Thus, the data set is a complete 6-year series of weekly water 

mass changes with respect to the mean field for the same time period. In the con-

struction of the data matrix D, the variables (channels) are the grid point water 

mass changes and the observations are the temporal changes of the gird points.  

 In addition to the continental water mass variability and postglacial rebound, the 

eigen-spectrum of the data covariance matrix of the GRACE-observed mass 

changes in North America likely contains errors in the de-aliasing models of at-

mospheric variability, tides and ocean signals, leakage of the ocean signals over the 

continents, and correlated errors. Because of the complexity of the GRACE errors 

and the known variability, we have found that the ad hoc rule of thumb is the most 

efficient technique for selecting the retained principal components. 

 

 

5. Results 

5.1 PC/EOF analysis 

 Figure 2 shows the first six EOF loading patterns. The first EOF represents the 

secular mass increase over Hudson Bay associated with the postglacial rebound 

signal, as well as the mass decrease in south-eastern Greenland and Alaska due to 

the rapid ice sheet and glaciers melting. The time evolution of this EOF is a trend 

as shown in Figure 3 by the first PC time series, which is normalized by dividing  
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Figure 2: EOF loading patterns of the weekly GRACE-observed mass variations in �orth 

America; units are cm WEH 

 

 

Figure 3: �ormalized principal component (PCs) time series of the weekly GRACE-

observed mass variations in �orth America 

 

with the maximum value. Therefore, the EOF multiplied by the same maximum 

represents the magnitude of the signal in cm WEH. The trend mass variations rep-

resent about 44% of the total data variance. The second EOF shows the pattern of 

the snow accumulation and melting in the Western Cordillera and Quebec-

Labrador and accounts for about 20% of the data variance. The second PC time 
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series clearly shows the more gradual late fall and winter snow accumulation with 

a maximum in April and the rapid spring melting. The lowest water content for 

North America is reached in September/October. The third mode shows mostly 

dipole variability (11%) over North America. The corresponding PC time series 

does not show structured signal behaviour. The fourth, fifth and sixth modes ex-

plain low percentage of the data variance (approximately 3% each). We show only 

the fourth PC which accounts for the time evolution of the hydrologic signal in St. 

Lawrence River and Mississippi basins and the US high plains and shows an an-

nual cycle with December/January lows and May/June highs. 

5.2 MSSA  

 The parameters of the analysis are as follows. The lag-window is 156 epochs, 

which is the maximum possible window and at the same time a multiple of the an-

nual cycle. This allows us to analyze the trend, annual and semi-annual variations 

without varying the lag-window in each case. As in the PC/EOF analysis, the trend 

is the most dominant signal identified by the first and second modes in Figures 4 

and 5 but contributes only 33% to the total variance. The third and fourth modes 

account for the annual cycle with 24% of the data variance. Clear spectral mixing 

of the trend and annual modes is seen in both figures. If the water mass variations 

were the sole focus of this analysis then the geodynamic postglacial rebound signal 

should have been removed using the most accurate available model which would 

leave the annual cycle as the signal with the largest variance in North America. 

However, as shown in Rangelova and Sideris (2008), any residual mass variations 

due to the imperfect postglacial rebound model will be present in the hydrology 

EOF loading patterns.  

 

 

Figure 4: �ormalized spatio-temporal principal component (PCs) time series of the 

weekly GRACE-observed mass variations in �orth America 
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Figure 5: Spatio-temporal EOF cosine (left) and sine (right) loading patterns of the 

weekly GRACE-observed mass variations in �orth America; units are cm WEH 

 

 The third pair (fifth and sixth modes), which corresponds to the semi-annual 

variations, explains only 5.2% of the total data variance and is mixed with the sev-

enth, eighth and ninth modes. The largest semi-annual patterns are located over the 

oceans. Without further analysis of the GRACE-observed residual ocean signal and 

restoring the main part from the background models used in the GRACE data proc-

essing, it is difficult to assess if the extracted semi-annual variability is indeed a 

real signal. It should be noted that the conventional PC/EOF analysis does not see 

semi-annual variability or more precisely it is not able to extract the low-variance 

signal from the noisy data.  

 Figure 5 shows the three maximums and minimums in the annual sine and co-

sine loading patterns in cm WEH after multiplying the EOFs with the maximums 

of the corresponding PC time series. The third EOF is the pattern of the snow mass 

variability in the east and west mountain regions. While this EOF pattern does not 

change in time, the fourth EOF shows large variations both in space and time. 

There is an apparent reduction in the amplitudes that compensates for the positive 

trend in the fourth PC times series in Figure 4. Further evidence that the trend and 

annual signals are not effectively separated is found in the trend EOFs which con-

tain patterns associated with the annual hydrology variations. Part of the problem 

comes from the fact that in some areas, such as the Alaskan glaciers, Hudson Bay 

and Laurentide, grid points exhibit both trend and annual variations, which in this 

case are virtually inseparable. This effect is further enhanced by the low spatial 

resolution of the GRACE mass variations. However, the main factor for this spec-

tral mixing is the relatively short data series. An analysis of a 10-year time series of 

synthetic mass variations computed from postglacial rebound and hydrology mod-
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els shows that if the GRACE data noise is disregarded the effect of the spectral 

mixing becomes irrelevant. The main reason for this improvement is the increased 

statistical significance of the annual cycle.  

 

 

6. Conclusions 

 We analyzed 6 years of GFZ weekly GRACE water mass changes in North 

America using the conventional principal components/empirical orthogonal func-

tions (PC/EOF) analysis and the multichannel singular spectrum analysis (MSSA). 

Both methods are able to extract the main mass variations, i.e., the mass increase in 

Hudson Bay and the mass decrease in the Alaskan glaciers and Greenland and the 

annual hydrology cycle, from the noisy data, but the MSSA could not separate well 

the trend and annual signals, both appearing to explain large portions of the total 

data variance. The main reason is likely the fact that while increasing the lag-

window size we were not able to control the statistical significance of the extracted 

periodic variability. As GRACE continues to provide data, the problem will be-

come less significant, but the computational load will eventually increase signifi-

cantly. This is the main obstacle that does not allow analyses of series of maps of 

global mass variability, in which case PC/EOF has a clear advantage. Nonetheless, 

MSSA will be more relevant in the studies of the GRACE-derived ocean mass 

changes where spatio-temporal variations of the EOFs may be more pronounced 

than on land. Furthermore, as shown in our examples, MSSA is able to extract a 

low-variance semi-annual signal which was not the case for the PC/EOF analysis. 

Whether this signal is of geophysical origin is yet to be verified; nevertheless, it 

may be advantageous to apply MSSA in the studies of the water balance in large 

river basins with a large semi-annual cycle such as Congo or to study low-variance 

inter-annual signals. 
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