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Abstract 

 An optimal modification of the least-squares collocation (LSC) method is presented in 

this paper, aiming to remove its inherent smoothing effect while sustaining most of its local 

prediction accuracy at each computation point. Our “de-smoothing” approach is based on a 

covariance-matching constraint that is imposed on a linear transform of the LSC solution so 

that the final predicted signal reproduces the spatial variation implied by an a-priori covari-

ance (CV) function model. Concurrently, an optimal criterion is evoked which minimizes 

the loss in local prediction accuracy (in the mean squared sense) that occurs from the linear 

transformation of the original LSC solution to its CV-matching counterpart. The merit and 

the theoretical principles of this signal filtering technique are analytically explained and a 

comparative example with the usual LSC prediction method is also given. 

 

1. Introduction 

 The prediction of the stochastic behavior of a continuous spatial random field 

(SRF) using a set of observed values of the same and/or other SRFs is a fundamen-

tal inverse problem in geosciences. The mathematical model that is commonly used 

for the solution of this problem can be formulated in terms of the generalized ob-

servation equation: 

 nivuLy iii  ..., ,2 ,1       ,      )(    =+=  (1) 

where  u(P)  denotes the primary random field of interest  (P∈D, with  D  being a 

bounded or unbounded spatial domain) that needs to be determined, at one or more 

points, using n discrete measurements taken on the same and/or other locations. 

The symbols  Li (·)  correspond to bounded linear or linearized functionals of the 

unknown field and they are dictated by the particular physical model that relates 

the observable quantities with the underlying SRF itself. The additive terms  {vi}  

represent the effect of measurement random noise in the available data.  

 The predominant approach that is followed in geodesy for solving such prob-

lems is the method of least-squares collocation (LSC) which was introduced by 

Krarup (1969) in a deterministic context as a rigorous framework for signal ap-

proximation problems in separable Hilbert spaces with reproducing kernels, and 
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formulated in parallel by Moritz (1970) under a probabilistic setting as an optimal 

prediction technique for spatially correlated random variables and stochastic proc-

esses; see also Dermanis (1976) and Sanso (1986). 

 A critical aspect in LSC is the smoothing effect on the predicted signal which 

typically exhibits less spatial variability than the actual field  u(P)  that needs to 

recovered from the available discrete data. As a result, small signal values are often 

overestimated and large signal values are underestimated, thus introducing a likely 

conditional bias in the final results. Such a smoothing effect is not solely associated 

with the LSC method and it occurs in most interpolation techniques aiming at the 

optimal approximation of a continuous function from a finite number of observed 

functionals. Note that signal smoothing should not be perceived as an entirely 

“harmful” interpolation effect since it ensures that the recovered field does not pro-

duce artificial details not inherent or proven by the actual data (a fact that is cer-

tainly a desirable characteristic for any signal interpolator).  

 However, the use of smoothed SRF images or maps generated by optimal tech-

niques such as LSC provides a shortfall for applications sensitive to the presence of 

extreme signal values, patterns of field continuity and spatial correlation structure. 

While founded on “local” optimality criteria that minimize the mean squared error 

(MSE) at each prediction point, the LSC approach overlooks to some extent a fea-

ture of reality that is often important to capture, namely spatial variability. The 

latter can be considered a “global” field attribute since it only has meaning in the 

context of the relationship of all signal values (true or predicted) to one another in 

space. As a result of its inherent smoothing effect, the ordinary LSC solution does 

not reproduce the histogram of the underlying SRF and the spatial correlation 

structure that is implied by its covariance (CV) function. 

 In this paper we present an ad-hoc technique that enhances the LSC prediction 

by eliminating its smoothing effect, while preserving most of its local prediction 

accuracy. Our approach applies an optimal linear transformation to the result ob-

tained by the LSC algorithm in a way that the transformed field matches the spatial 

correlation structure of the unknown SRF. The optimality of this signal transforma-

tion scheme is controlled through a criterion that minimizes the prediction accuracy 

loss (in the MSE sense) that inevitably occurs within the conversion of the original 

LSC solution to its CV-matching counterpart. 

 The structure of the paper is organized as follows: in section 2 a general over-

view of the classic LSC method for SRF prediction is presented, along with the 

most important mathematical formulae that are required for the development of our 

CV-matching technique which is presented in detail in section 3; in section 4 a 

numerical example is given to demonstrate the performance of the classic LSC 

solution compared to the CV-matching solution for a standard noise filtering prob-

lem; in section 5 some concluding remarks are finally drawn and a few related 

ideas for future work are also outlined.  
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2. The least-squares collocation solution 

 Denoting by  si = Li(u)  the signal part in the available data, the system of obser-

vation equations formed by (1) can be written in the following vector form: 

 vsy         +=  (2) 

where  y, s and v  are random vectors containing the given measurements and the 

unknown signal and noise values, respectively, at all observation points.  

 The signal and noise components in (2) are considered uncorrelated with each 

other (a crucial simplification that is regularly applied in practice) and with known 

second-order spatio-statistical properties in terms of their given expectations and 

co-variances. 

 Assuming that the spatial variability of the primary SRF is described by a co-

variance function model  Cu(P, Q),  the elements of the CV matrix of the signal 

vector s are determined according to the propagation law (Moritz 1980) 

 ),(      ][  jiuji PPCLLji, =sC  (3) 

where  Li  and  Lj  correspond to the functionals associated with the  ith  and  jth  

observation, respectively. In the same way, the cross-CV matrix between the pri-

mary SRF values at the selected prediction points ( miPi  ..., ,1    : =′ ) and the observed 

signal values at the available data points ( njPj  ..., ,1    : = ) is formed as follows: 

 ),(     ][  jiuj PPCLji, ′=usC  (4) 

 For the purpose of this paper, the CV matrix  Cv  of the measurement noise is 

also considered known based on an appropriate stochastic model that describes the 

statistical behavior of the zero-mean measurement errors. 

 An additional postulate on the spatial trend of the primary SRF is often em-

ployed as an auxiliary hypothesis for the LSC inversion of (1) or (2). In fact, vari-

ous LSC prediction algorithms may arise in practice, depending on the treatment of 

the signal de-trending problem. For the purpose of this paper and without any es-

sential loss of generality, it will be assumed that we deal only with zero-mean sig-

nals,  E{u} = 0,  E{s} = 0. 

 Based on the previous assumptions, the LSC predictor is given by the well 

known matrix formula: 

 yCCCu
vsus

 )(    ˆ 1−
+=  (5) 

which corresponds to the linear unbiased solution with minimum mean squared 

prediction error (Moritz 1980, Sanso 1986).  

 The inherent smoothing effect in LSC can be identified from the covariance 
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structure of its optimal result. Indeed, if we apply CV propagation to the signal 

prediction formula in (5), we get the CV matrix 

 T1
ˆ )(  

usvsusu
CCCCC

−

+=  (6) 

which describes the spatial variability of the recovered field and it generally differs 

from the CV matrix of the original SRF at the same points, i.e. 

 ][    ),(    ][
ˆ

i,jPPCi,j jiu uu
CC ≠′′=  (7) 

Moreover, if we consider the LSC prediction errors  uue −= ˆ  ,  it is well known 

that 

 
euu

CCC         
ˆ

−=  (8) 

where the error CV matrix is given by the equation (Moritz 1980) 

 T1)(        
usvsusue

CCCCCC
−

+−=  (9) 

 The fundamental “orthogonality” relation in (8) conveys the meaning of the 

smoothing effect within the LSC algorithm which essentially acts as an optimal 

low-pass filter (Wiener filter) to the input data. The spatial variability of the LSC 

prediction error, in terms of the error variances and co-variances at the computation 

points, is exactly equal to the deficit in spatial signal variability of the LSC predic-

tor with respect to the original SRF. 

 

 

3. Optimal “de-smoothing” of the LSC solution 

 Our objective is to develop a correction procedure that can be applied to the 

optimal result obtained by LSC for the purpose of removing its inherent smoothing 

effect, while sustaining most of its local prediction accuracy. In general terms, we 

seek a “de-smoothing” transformation to act upon the LSC predictor )ˆ(  ˆ uu ℜ=′  in a 

way that the covariance structure of the primary SRF is recovered. This means that 

the transformation  ℜ(·)  should guarantee that 

 
uu

CC     

ˆ
=

′
 (10) 

where  Cu  is the CV matrix formed through the covariance function  Cu(P, Q)  of 

the primary SRF; see (7). 

 Moreover, the prediction error uue −′=′ ˆ   associated with the “corrected” field 

should remain small in some sense, so that the new solution provides not only a 

CV-matching representation of the original field, but also locally accurate pre-

dicted values on the basis of the given data. For this purpose, the formulation of the 
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transformation operator  ℜ(·)  should incorporate an additional optimality principle 

by minimizing, for example, the trace of the error CV matrix  Ce'. 

 Let us adopt a straightforward linear approach to transform the original LSC 

predictor in the following way 

 uRu ˆ   ˆ =′  (11) 

where  R  is a square filtering matrix that needs to be determined according to 

some optimal criteria for the new predictor  u′ˆ .  

 The transformed signal obtained from (11) should reproduce the spatial covari-

ance structure of the primary SRF, in the sense that 
uu

CC   

ˆ
=

′
 for the given spatial 

distribution of all prediction points. Hence, the matrix  R  has to satisfy the con-

straint 

 
uu

CRRC   

T
ˆ

=  (12) 

where 
u

C  and 
u

C
ˆ

 correspond to the CV matrices of the primary and the LSC-

predicted SRFs, respectively. 

 The accuracy assessment of the CV-matching predicted field should be based 

on the error CV matrix  

 })ˆ()ˆ{(  T
 uuuuCe −′−′=

′
E  (13) 

which, taking into account (11), is reduced to the form 

 TT
ˆˆˆ

        RCRCCRRCC uuuuuue −−+=
′

 (14) 

 Using the orthogonality relation (8) and also the following equation that is al-

ways valid for the LSC predictor (assuming that there is zero correlation between 

the observed signals s and the measurement noise v) 

 
uuu

CC
ˆˆ

  =  (15) 

the new error CV matrix can be finally expressed as 

 T)()(    
ˆ

RICRICC uee −−+=
′

 (16) 

where  Ce  is the error CV matrix of the usual LSC solution. Evidently, the predic-

tion accuracy of the CV-matching solution will always be worse than the prediction 

accuracy of the original LSC solution, regardless of the form of the filtering matrix  

R.  This is not surprising since LSC provides the best (in the MSE sense) unbiased 

linear predictor from the available measurements, which cannot be further im-

proved by additional linear operations.  

 Our goal is to determine an optimal filtering matrix that satisfies the CV-
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matching constraint in (12), while minimizing the loss of the prediction accuracy in 

the recovered signal, in the sense that 

 minimum  )(   )( ==−
′′ eee

CCC δtracetrace  (17) 

where  T)( )(  

ˆ
RICRIC ue −−=

′
δ   represents the part of the error CV matrix of 

the CV-matching predictor that depends on the choice of the filtering matrix. 

 The determination of the filtering matrix that satisfies the CV-matching con-

straint (12) and also minimizes the loss in the MSE prediction accuracy of u′ˆ  ac-

cording to (17), is analytically described in Kotsakis (2007). Here we only present 

the final result without going into any technical details regarding its mathematical 

proof.  

 The optimal filtering matrix is 

 2/12/12/12/12/1 )(  
ˆ uuuuu

CCCCCR
−

=  (18) 

or equivalently 

 2/12/12/12/12/1

ˆˆˆˆ

)(  
uuuuu

CCCCCR
−−

=  (19) 

 Note that the above result was originally derived in Eldar (2001) under a com-

pletely different context than the one discussed in this paper, focusing on applica-

tions like matched-filter detection, quantum signal processing and signal whiten-

ing.  

 

 

4. �umerical example 

 A numerical example is presented in this section to demonstrate the perform-

ance of the transformed CV-matching solution u′ˆ  in comparison with the classic 

LSC solution û . This particular test refers to a standard noise filtering problem for 

a set of simulated gravity anomaly data. The image shown in Fig. 1(a) is the actual 

realization of a free-air gravity anomaly field that has been simulated within an 

50×50 km2  area with a uniform sampling resolution 2 km, according to the follow-

ing model of spatial CV function 

 
2)/(1

  )(
ar

C
P,QC

PQ

o
u

+

=  (20) 

where  Co = 220 mgal2,  rPQ  is the planar distance between points  P  and  Q,  and 

the parameter  a  is selected such that the correlation length of the gravity anomaly 

signal is equal to  7 km.  

 The noisy data grid is shown in Fig. 1(b) with the underlying noise level set to 
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±15 mgal. The additive random errors have been simulated as uncorrelated random 

variables, thus enforcing a white noise background for the gridded data. In Fig. 

1(d) we see the filtered signal as obtained from the classic LSC algorithm (i.e. 

Wiener filtering), whereas in Fig. 1(c) is shown the result obtained from the opti-

mal CV-matching transformation that was described in the previous section. 

 

 

 

Figure 1. Plots of: (a) the true (simulated) gravity anomaly signal, (b) the noisy observed 

signal, (c) the CV-matching transformed signal, and (d) the LSC-filtered signal 

 

 Although the LSC method provides the most accurate (in the MSE sense) fil-

tered signal, the result obtained from the transformed CV-matching solution clearly 

looks more similar to the original field that is depicted in Fig. 1(a). The emulation 

of the spatial variability of the primary SRF by the CV-matching solution u′ˆ , in 

contrast to the smoothed representation obtained by the LSC predictor û , can also 

be seen in the histograms plotted in Fig. 2, as well as in the signal statistics listed in 

the following table. 

 (a) (b) 

 (c) (d) 
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Table 1. Statistics of the true (simulated) signal, the LSC-filtered signal and the 

CV-matching transformed signal (all values in mgal) 

 Max Min Mean σ 

True signal 45.33 –42.88 –0.04 14.96 

LSC solution 27.42 –29.10 0.74 10.29 

CV-matching solution 41.47 –42.48 0.73 14.64 

 

 

Figure 2. Histograms of: (a) the true (simulated) gravity anomaly signal, (b) the LSC-

filtered signal, and (c) the CV-matching transformed signal 
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5. Conclusions 

 Due to its inherent smoothing effect, the LSC solution does not reproduce the 

spatial correlation structure of the primary SRF that needs to be recovered from its 

observed functionals. The technique presented in this paper overcomes this prob-

lem by transforming the original LSC solution through a CV-matching operator 

under a “minimum prediction accuracy loss” optimal criterion. In contrast to sto-

chastic simulation schemes which provide multiple equiprobable signal realizations 

according to some CV model of spatial variability (e.g. Christakos 1992), the 

methodology presented in this paper gives a unique field estimate that is statisti-

cally consistent with an a-priori model of its spatial covariance function. The 

uniqueness is imposed through an optimal criterion that minimizes the loss in local 

prediction accuracy (in MSE sense) which occurs when we transform the LSC so-

lution to fit the spatial correlation of the primary SRF over all prediction points. 

 Note that similar predictors have also appeared in the geostatistical literature by 

constraining the unbiased solutions obtained by various forms of kriging through a 

covariance-adaptive condition, thus yielding SRF predictors that match not only 

the first moment but also the second moment of the unknown SRF (Cressie 1993, 

Aldworth and Cressie 2003).  

 Evidently, the rationale of the proposed technique relies on the knowledge of 

the true covariance function of the underlying SRF, an assumption which is also 

inbuilt in the theoretical development of the LSC method itself (Moritz 1980). In 

practice, an empirical signal covariance function is often first estimated from a 

noisy data record and then used in the implementation of the LSC procedure for the 

(sub-optimal) recovery of the primary SRF at a number of prediction points. It is 

thus reasonable to question whether it would be meaningful to let the spatial vari-

ability of the LSC solution to be adapted to an empirical covariance function by 

following the CV-matching approach presented in this paper. A more reasonable 

methodology in this case would be to incorporate a variance component estimation 

approach, in the sense that the final predicted field adapts to an “improved” model 

of spatial variability (i.e. with respect to the one imposed by the empirical CV 

function). In contrast to the standard CV-matching constraint introduced in (10), 

we may impose the alternative CV-tuning constraint  

 
uu

QC    

2
ˆ

σ=
′

 (21) 

where the CV matrix  Qu  is formed through the empirically determined signal CV 

function, and  σ2  is an unknown variance factor which controls the consistency 

between the empirical and the true CV function for the underlying unknown signal. 

Tackling the above problem along with the study of one-step CV-matching linear 

predictors, instead of the two-step constructive approach that was presented herein, 

may be an interesting subject for future investigation.  
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