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Summary 

 The methods for the determination of crustal deformation parameters such as principal 

strains, dilatation and shear, are critically reviewed. Apart from the historical evolution of 

the method emphasis is given in several of their particular aspects, such as the method of 

observation adjustment, the interpolation of the estimated displacements, their domain of 

application (plane, three-dimensional space, sphere, ellipsoid, natural earth surface), the 

problem of datum definition and the related invariance of strain parameters, the separation 

of deformation from relative rigid motion of tectonic blocks and finally the quality assess-

ment of the obtained results. 

 

 

1. Introduction 

 The determination of changes in the shape of the earth is of paramount impor-

tance in geophysics in particular for the study of tectonic activity related to earth-

quakes. Geodesists have developed a vivid interest in the subject even in the early 

days when observational accuracy could not ensure reliable estimates of point dis-

placements on the earth crust within a reasonably short time interval of a few years. 

The advent of the space geodesy era and in particular the widespread availability of 

GPS equipment gave a new life to the topic and extensive research activity is going 

on implementing a number of different methodologies. Here we will explore the 

development of various approaches to geodetic determination of crustal deforma-

tion from the early days up to now, with emphasis on their methodological charac-

teristics. 

 Geodesy provides information of a discrete character such as displacements or 

velocities of control points, while deformation is a spatially continuous phenome-

non. Therefore the main criterion for the classification of the various approaches is 

the explicit or implicit method of spatial interpolation of the information at hand. A 

second important aspect is whether deformation is studied for the 3-dimensional 

earth body, which is in fact the only “real” deformation, or some other 2-

dimensional entity. The latter choice is necessitated by the fact that observations 

are carried on the surface of the earth as well as by the fact that the geophysical 
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origins of horizontal deformation (due mainly to secular tectonic plate motion) are 

different from those of vertical deformation (due to periodic effects related to an-

nual variation in the earth water cycle or to secular motion associated with post-

glacial uplift). For this reason geodesists prefer to study not the deformation of the 

readily accessible natural earth surface, but rather the deformation of its projection 

on a “horizontal” surface, such as a plane for a small region, a cartographic projec-

tion plane, the sphere or the reference ellipsoid. Since the isolated study of vertical 

motion though of great geophysical interest poses no methodological challenges to 

the geodesist, we will confine our present study to methods for the determination of 

horizontal deformation. We must mention though an alternative approach the so 

called “integrated geodesy” approach, where geometric displacements are associ-

ated with accompanying changes in gravity. In practice such changes are predomi-

nantly due to vertical displacements and thus the topic will be altogether excluded 

from our exposition. 

 Starting with the simplest case, planar deformation is described by the deforma-

tion mapping ( )′ =x f x  which corresponds to the Cartesian coordinates x  of any 

point P  at an initial epoch t , its coordinates ′x  at a later epoch t′ . Locally the 

function f  is represented by its local linear approximation, the deformation gradi-

ent  / /′∂ ∂ ∂ ∂= =f x x xF .  It is in some cases convenient to replace this with the 

displacement gradient  / ( ) /′∂ ∂ ∂ − ∂= = = −u x x x xJ F I ,  where ′= −u x x  are the 

point displacement vector. In place of F  or J  geophysicists prefer the strain ten-

sor E  associated with variation of the length element from ds  at t  to ds′  at t′ , 

through  2 2
2

T
ds ds d d′ − = x E x , and since d d′ =x F x , 2 T

ds d d= x x , 2 T
ds d d′ ′ ′= x x , 

it follows that  1

2
( )T

= −E F F I
1

2
( )T T

= + +J J J J .  Neglecting second order terms 

in the small quantities J , the infinitesimal strain tensor is used instead: 
1

inf 2
( )T

= + ≈E J J E . In place of the elements of 
inf

E  a number of strain parame-

ters which are invariant under particular changes of reference system (see e.g., 

Jaeger, 1969, Malvern, 1969, Fung, 1977, Eringen, 1980, Livieratos, 1978, Liv-

ieratos, 1979, Livieratos, 1980, Dermanis & Livieratos, 1983, Caspary, 1987). 

These are the dilatation Δ , the shear components 
1
γ , 

2
γ  and the rotation ω , re-

lated to the elements of 
inf

E  through  

 
11 12 1 2

inf

12 22 2 1

1

2

ε ε γ γ

ε ε γ γ

Δ +⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥Δ −⎣ ⎦ ⎣ ⎦

E , (1) 

so that  
11 22
ε εΔ = + ,  

1 11 22
γ ε ε= −   and  

2 12
2γ ε= .  The displacement gradient 

matrix can be analyzed into a symmetric and antisymmetric part so that 

 
inf

1 1
( ) ( )

2 2

T T
= + + − = + =J J J J J E Ω  
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11 12 1 2

12 22 2 1

0 01

0 02

ε ε γ γω ω

ε ε γ γω ω

Δ +⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ −− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, (2) 

where 
11 22
J JΔ = + , 

1 11 22
J Jγ = − , 

2 12 21
J Jγ = +  and 1

12 212
( )J Jω = − . Thus the 4 

parameters Δ , 
1
γ , 

2
γ , ω  constitute an equivalent set to the 4 elements of J . Th 

shear components 
1
γ , 

2
γ  are replaced by the invariant maximum shear strain 

2 2

1 2
γ γ γ= +  and the associated direction angle 1

1 22
arctan( / )ϕ γ γ= − . Some times 

the principal direction of contraction 1

2 12
45 arctan( / )β ϕ γ γ= + = −

�  is given in the 

literature as the “direction of γ ”. 

 To get rid of the particular time interval t t t′Δ = −  the strain parameters Δ , 
1
γ , 

2
γ , ω  are divided by tΔ  to obtain the corresponding time derivatives Δ� , 

1
γ� , 

2
γ� , 

ω�  (strain rate parameters). Thus we implicitly assume that the displacement gradi-

ent if a linear function of time 
0

t= +J J J� , so that its derivative J�  and the strain 

rate parameters are constant with respect to time. In this case γ  is replaced bt the 

invariant parameter 2 2 1

1 2 1 1 2 2
/ ( )d dtγ γ γ γ γ γ γ γ γ

−

= + ≠ = +� � � � � . Another set of strain 

parameters stemming from the diagonalization of the strain matrix 

( ) ( )θ θ= −E R ΛR , are the maximum and minimal principal strains, 
max 11
e = Λ  and 

min 22
e = Λ , respectively and the direction angle θ  of 

max
e , typically replaced by 

their “infinitesimal” counterparts based on the diagonalization 

inf inf inf inf
( ) ( )θ θ= −E R Λ R . In fact 

max min
e eΔ = +  and 

max min
e eγ = − . 

 As a rigorous alternative to the infinitesimal strain approach Biagi & Dermanis 

(2006, 2009) have introduced the singular values 
max

λ , 
min

λ  of the deformation 

gradient matrix F  as the fundamental parameters from which other strain parame-

ters can be rigorously derived. These are the positive roots of the common eigen-

values of 2( ) ( )T
θ θ= −F F R Λ R  and 2( ) ( )T

θ θ′ ′= −FF R Λ R  and are the diagonal 

elements of the diagonal matrix Λ  appearing in the singular value decomposition 

( ) ( )θ θ′= −F R ΛR . Additional parameters are the direction angles of the principal 

direction, θ  in the original and θ ′  in the second epoch reference system. The prin-

cipal strains are 2

max max
( 1) / 2e λ= −  and 2

min min
( 1) / 2e λ= − , dilatation becomes 

max min
1λ λΔ = − , maximum shear strain 

max min max min
( ) /γ λ λ λ λ= −  and its direc-

tion angle is ϕ θ δ= −  where δ  is an auxiliary angle determined from 

( )21

2
sin 1 / 4δ γ γ= + +  and ( )21

2
cos 1 / 4δ γ γ= − + . The difference 

θ θ θ′Δ = −  replaces the rotation angle ω  of the approximate infinitesimal ap-

proach. 
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2. The early days and the linear model for the deformation  

function 

 The first spatial interpolation method for displacements has been based on the 

linearity assumption that ′ = + = + +x Fx c x Jx c , with constant gradient = +F I J  

and displacement c , so that the displacements ′= − = +u x x Jx c  are linear func-

tions of the coordinates x  over a particular region under study, while the strain or 

strain rate parameters are constant within that region. When a larger region is under 

study where the above assumption cannot hold, it is fragmented into smaller re-

gions where J  and the subsequent strain parameters are constant, a scheme that in 

mathematics would be characterized as representation (interpolation) by step func-

tions. The simplest choice of sub-regions is non-overlapping triangles of a geodetic 

control network, a method that has been later characterized as the “finite element” 

method with triangular elements. From the 6 displacement components 
A

u , 
B

u , 

C
u  at the triangle vertices A , B , C , it is possible to determine uniquely the 6 

elements of J  and c . In order to determine the strain parameters the constant dis-

placement c  is eliminated by forming differences, e.g. ( )
B A B A
− = −u u J x x , 

( )
C B C B
− = −u u J x x  and the displacement gradient is determined from 

 [ ][ ]
1

B A C B B A C B

−

= − − − −J u u u u x x x x� � . (3) 

 As reported by Rikitake (1976) this method has been put in use in Japan by 

Terada & Miyame (1929) and Tsuboi (1933). Since Rikitake’s exposition it has 

become popular mainly due to its simplicity and is still in use by many researchers, 

e.g., Harada & Shimura (1979), Fujii & �akane (1983), Kakkuri & Chen 

(1990), Feigl et al. (1993), Jouanne, Menard & Jault (1994), Martinod et al. 

(1996), Li, Miyashita & Fujii (1997), Walpersdorf et al. (1998), Ferhat, Feigl, 
Ritz & Souriau (1998), Sue et al. (2000), Haas, Gueguen, Scherneck, �othnagel 
& Campbell (2000), Fukuda et al. (2000), Puglisi, Bonforte & Maugeri (2001), 

Sagiya, �ishimura, Iio & Tada (2002), Bock et al. (2003), Dogăn, Ergintav, 
Demirel, Çakmak & Özener (2003), Grafarend & Voosoghi (2003), Fujii 
(2003), Puglisi & Bonforte (2004), Mohamed (2005), �ishimura & Hashimoto 

(2006), Bayer et al. (2006), Masson et al. (2007), Cai & Grafarend (2007a), Ma-
rotta & Sabadini (2008). 

 Dermanis (1994) gave a finite element method deriving strain parameters and 

their covariances directly from the observed 3 distances in trilateration surveys. 

Welsch (1983) presented a finite element method utilizing angle and side length 

variations both in triangles and larger sub-networks implementing side conditions 

for shared sides and angle closures. A 3-dimensional finite element method with 

quadrilateral elements has been used by Kiamehr & Sjöberg (2005). 

 The main disadvantage of the method is the fact that a minimal amount of in-
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formation is used for the determination of strain parameters and thus it is impossi-

ble to detect within each triangle from the results themselves a violation of the as-

sumption of constant strains. Strain parameter covariances calculated by applica-

tion of the law of error propagation on the covariances of the input displacements 

reflect the uncertainties in the input information but ignore completely the interpo-

lation error. If neighbouring triangles have strain estimates which are very similar, 

this is an indication that the interpolating hypothesis holds true to a satisfactory 

extend. On the other hand large strains in isolated triangles, with small strains in 

neighbouring triangles, may not reflect local deformation but rather relative motion 

misinterpreted as deformation, e.g. in the case where the triangle vertices lie on 

different sides of a fault. 

 A second line of development is associated with the early analysis of triangula-

tion results in particular with studies at the seismic zone around the Saint Andreas 

fault in California. The first influential work in the English literature is that of 

Frank (1966). To understand Frank’s and subsequent methods we need to express 

observed temporal variations of azimuths, angles and distances in a geodetic con-

trol network as functions of strain parameters. If  
AB
s   is the distance between two 

points A  and B  and 
AB

n  the unit vector from A  to B  it holds that 

AB B A AB AB
s≡ − =x x x n   at epoch  t   and (assuming J  to be constant within the 

region of interest)  ( )
AB AB AB AB AB AB

s′ = + = +x x Jx n Jn  at the second epoch  t′ .  

The distance 1/ 2( )T

AB AB AB
s = x x  becomes 1/2( )T

AB AB AB AB AB
s s sδ′ ′ ′= + = =x x  

1/2[( ) ( )]T

AB AB AB AB
= + +x Jx x Jx ,  and the azimuth 

21
arctan[ /( ) ]( )

AB ABAB
a = xx  

becomes 
21

arctan[( ) /( ) ]
AB AB AB AB AB AB AB

a a aδ′ ≡ + = + +x Jx x Jx . Ignoring second 

order terms in the small elements of J  the distance and azimuth variations become 

 2 2

11 22 12 21
sin cos ( )sin cosAB

AB AB AB AB

AB

s
J a J a J J a a

s

δ
≈ + + +  (4) 

 2 2

12 21 11 22
cos sin ( )sin cos

AB AB AB AB AB
a J a J a J J a aδ ≈ − + −  (5) 

For an angle 
ABC AC AB

a aθ = −  the variation becomes to the same approximation 

 2 2

12 21 11 22

1
( )(sin sin ) ( )(sin 2 sin 2 )

2
ABC AB AC AC AB

J J a a J J a aδθ ≈ + − + − − . (6) 

Replacing the elements of J  with the strain parameters according to (2) we arrive 

at the equivalent relations 

 2 1
cos2 sin 2

2 2
AB AB AB

a a a

γ γ
δ ω≈ + + , (7) 
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 1 2
cos2 sin 2

2 2 2

AB

AB AB

AB

s

a a

s

δ γ γΔ
≈ − + , (8) 

 2 1(cos2 cos2 ) (sin 2 sin 2 )
2 2

ABC AC AB AC AB
a a a a

γ γ
δθ ≈ − + − . (9) 

 From the above relations it is obvious that dilatation Δ  can be determined only 

when also distances are observed, while the determination of the rotation ω  re-

quires the inclusion of azimuth observations.  

 In the method of Frank (1966) two equations of the form of (9) are formulated 

for the two independent angles of a triangle and are uniquely solved for the two 

constant shear strain components 
1
γ , 

2
γ  within the triangle. Note that Frank’s 

method presupposes that the triangle angles are not the raw observed ones but have 

been corrected so that they sum up to 180° at each epoch, so that the 3 variations 

satisfy the condition 0
ABC BCA CAB

δθ δθ δθ+ + = . Bibby (1975), claims that a 

graphical method equivalent to that of Frank had been already used by Wellman 

(1955). The method is subsequently used by Pope, Stearns & Whitten (1966), 

Thatcher (1975), Dunbar, Boore & Thatcher (1980), Wellman (1981), 

Jouanne, Menard & Jault (1994), Jouanne, Hippolyte, Gamond & Martinod 

(2001). 

 Savage & Burford (1970) extended the approach of Frank (1966) from trian-

gles to quadrilaterals. The 8 variations of the 8 quadrilateral angles as observed in 

the two epochs without any correction are expressed in terms of the 2 shear com-

ponents and a least squares solution for 
1
γ  and 

2
γ  is obtained. Similar extensions 

with least squares fits have been used by Wellman (1981), Hunstad, Selvaggi, 

D’Agostino, England, Clarke & Pierozzi (2003). 

 Savage & Prescott (1973), following earlier original work of Hofmann (1968), 

(see also Scholz & Fitch, 1969) utilized eq. (4) which with 
11 11
J ε= , 

22 22
J ε= , 

12 12
J ε ω= + ,  

21 21
J ε ω= −   is converted to 

 2 2

11 22 12
sin cos sin 2

AB

AB AB AB

AB

s

a a a

s

δ
ε ε ε≈ + +  (10) 

for the observed 15 lines of a 7-point trilateration network, to obtain estimates of 

the 3 strain components 
11
ε , 

22
ε , 

12
ε , assumed constant over the whole network 

through a least squares fit. The same method is subsequently used by Savage & 

Burford (1973), Savage & Prescott (1976), Savage, Prescott, Lisowski & King 

(1981), Prescott & Savage (1976), Savage, Prescott, Lisowski & King (1978), 

Savage, Lisowski & Prescott (1981a), Savage, Lisowski & Prescott (1981b), 

Prescott, Lisowski & Savage (1981). 

 Prescott (1976) modified Frank’s method by switching from angles 
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ABC AC AB
a aθ = −  to the directly observed directions 

AB AB A
a aφ = − . The corre-

sponding variations 
AB AB A

a aδφ δ δ= −  bring in an additional parameter 
A

aδ  for 

each observing station A . With 
AB

aδ  expressed as in eq. (7) it hold that 

 2 1cos2 sin 2 ( )
2 2

AB AB A AB AB A
a a a a a

γ γ
δφ δ δ δ ω= − = + − −  (11) 

and a least squares solution is possible for 
1
γ , 

2
γ  and the set of per station “nui-

sance” parameters 
A A

a aδ δ ω= −� , in which the common rotation ω  is absorbed. 

The method is used subsequently by Prescott, Savage & Kinoshita (1979), Pres-

cott & Savage (1976), Snay (1986), Sauber (1989), Davies (1996), Davies, Eng-

land, Parsons, Billiris, Paradissis & Veis (1997), Bawden, Donnellan, Kellogg, 

Dong & Rundle (1997). 

 The next greatly influential work, based also on the assumption of constant 

stains within a region, is the “simultaneous adjustment method” of Bibby (1981), 

which is based on previous work (Bibby 1973, 1975, 1976) and it is further elabo-

rated in Bibby (1982). The same method applied to the surface of the earth-sphere 

rather than the horizontal plane has been presented independently by Snay & Cline 

(1980). The basic idea is to adjust simultaneously observations carried out at dif-

ferent epochs based on the fundamental relation for deformation between an initial 

reference epoch 
0
t  and the observation epoch t  

 
0 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )t t t t t t t= ≡ = + = + −x F x F x x J x x Jx�  (12) 

where in relation to the general relation ( )0 0
( ) ( ), ( ) ( )t t t t t= + =x F x x c  

( )0 0 0
( ) ( ), ( ) ( )t t t t t= + +x J x x c , it has been assumed that: (a) ( )0

( ), ( )t t t=J x J , i.e. 

constant strains over the whole area for every epoch t , (b) 
0

( ) ( )t t t= −J J� , i.e. 

strains linear in time with 
0

( )t =J 0  and (c) ( )t =c 0  has been conveniently set for 

the temporal displacement of the area as a whole, which is in any case undetectable 

by geodetic means. Since any geodetic observable involves 2 or 3 points its can be 

expressed as a function of their coordinates ( )tx  at the observation epoch t . Using 

eq. (12), 
0 0 0

( ) ( )t t t= + −x x Jx� , the observables become functions of the initial co-

ordinates 
0

x  and the strain rate parameters J� , which utilizing the relation resulting 

from the time differentiation of eq. (2) may be conveniently replaced by another set 

of strain rate parameters such as 
11
ε� , 

12
ε� , 

22
ε� , ω� , or Δ� , 

1
γ� , 

2
γ� , ω� . Bibby’s 

method found further application either through the use of the DYNAP software of 

Drew & Snay (1989), implemented by Feigl, King & Jordan (1990), Snay & 

Matsikari (1991), Liu, Zoback & Segall (1992), or independently by Walcott 

(1984), Walcott (1987), �avarro, Catalao, Miranda, & Fernandes (2003). 

Reilly & Gubler (1990), extended the method to the case of non-constant strain 
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rates varying linearly within the region of study. The exposition by Feigl, King & 

Jordan (1990), appears to have been quite successful since it draw the attention of 

several researchers to the approach, e.g. Jouanne, Menard & Jault (1994), 

Walpersdorf, Vigny, Manurung, Subarya & Sutisna (1998), Ferhat, Feigl, Ritz 

& Souriau (1998), Duong & Feigl (1999), Sue et al. (2000), �avarro, Catalao, 

Miranda & Fernandes (2003), Vigny et al. (2003), Serpelloni, Anzidei, Baldi, 

Casula & Galvani (2005). 

 
 

3. Linear displacement model by least-squares fit 

 In the methods developed by Frank (1966) (modified by Savage & Prescott, 

1973, and Prescott, 1976) and especially Bibby (1981), the crucial point is the 

relation of observables to a set of strain parameters or just those of their combina-

tions that can be estimated by the data at hand. This relation is based on the funda-

mental assumption that 
0 0 0

( ) ( ) ( ) ( ) ( )t t t t t= + = + +x F x c x J x c  so that displace-

ments 
0

( ) ( ) ( )t t t= −u x x  are linear functions 
0 0

( ) ( ) ( )t t t= + − =u J x c c  

0
( ) ( )t tδ= +J x c  of the initial epoch coordinates 

0 0
( )t=x x , or under the assump-

tion that strain parameters change linearly with time, 
0 0 0

( ) ( ) ( )t t t t t= − + −u Jx c�

� . 

The last model is more appropriate for multi-epoch observations, while both mod-

els are equivalent when only two observation epochs are at hand. These assump-

tions may hold for the whole network if it small, or separately within each sub-

network resulting from a tectonically meaningful division of the region, with each 

network triangle treated as a separate sub-region in the extreme case. A different 

matrix ( )
K K
=J J s  or ( )

K K
=J J s� �  is assigned to each sub-region K  with its own 

strain parameters 
K
s  or strain rates 

K
s� , which are the unknowns to be estimated in 

a least squares adjustment. When identical observations are carried out in each ep-

och the (linearized) observations ( ) ( )t t=b Ax  share the same design matrix A  and 

can be differenced to obtain models where only displacement appear 

0 0
( ) ( ) ( ) [ ( ) ( )] ( )t t t t t tδ ≡ − = − =b b b A x x Au . Expressing the displacement 

i
u  of 

each point 
i
P  in terms of the strain parameters of its proper sub-region K , we ar-

rive at linear models  

 ap

0 0( ) ( ) ( )
i K i K i K K i K K i K K

δ δ δ δ= + = + ≈ + = +u J s x c C x s c C x s c C s c  

or 

 [ ]0 0 0 0
( ) ( ) ( ) ( ) ( )�

� � � �

i K i K i K K
t t t t t⎡ ⎤= − + = − + ≈⎣ ⎦u J s x c C x s c  

  [ ]ap

0 0
( ) ( ) ( )� � � �

i K K i K K
t t t t⎡ ⎤≈ − + = − +⎣ ⎦C x s c C s c   

where initial coordinates 
0i

x  have been replaced by the common for all epochs 

approximate values ap

i
x . For all the displacements we have the linear model 
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= +u Cs Dc , or ( ) ( ) ( )t t t= +u C s D c� � , where s  or s�  are the strain parameters or 

their rates for all the sub-networks and c  or c�  are the relative displacements or 

velocities of the sub-regions. Finally the adjustment model ( ) ( )t tδ =b Au  for 2 

epochs or ( ) ( )
j j
t tδ =b Au  for multiple epochs 

i
t , taking into consideration the 

observation errors v  takes the form ( ) ( )δ = + +b AC s AD c v  for two epochs or 

( ) [ ( )] [ ( )]
j j j
t t tδ = +b AC s AD c� � , 1,2,...,j T= , for multiple epochs. From the ad-

justment of the observation differences estimates of the strain parameters are de-

rived as well as the relative displacements or relative velocities between sub-

regions (no displacement or no velocity must be assumed for one sub-region, since 

a common rigid motion of the whole network cannot be detected). In many cases it 

is not possible to have exactly the same networks and/or observations in all epochs, 

since monuments may be destroyed or new monuments constructed. In such a case 

the design matrix ( )
j
tA  is different at each epoch and the initial adjustment model 

0
( ) ( ) ( )

j j j j j j j
t t t= = +b A x A x A u  contains in addition to the displacements the 

initial coordinates 
0 j

x , so that the initial coordinates 
0

x  of all epoch networks ap-

pear as additional parameters in the adjustments together with the strain and strain 

rate parameters. 

 An alternative to the above “raw observation” approach is the “displacement” 

approach, where the network is adjusted for all epoch observations using initial 

coordinates and per epoch displacements or velocities as unknown parameters. 

Although the degrees of freedom are less than in the “raw observation” approach, 

the “displacement” method has the advantage that the a posteriori least-squares 

fitting of strain (or strain rate) parameters to the displacements of each sub-region 

produces residuals which give an indication of the success of the fit of linear model 

in each separate sub-region and may lead to the unification or further division of 

the sub-regions until small residuals or appropriate statistical tests indicate a satis-

factory model choice. A special case of this approach is the previously described 

finite element method where the strain parameters are uniquely derived by dis-

placements at each triangular sub-region without need for a least-squares fit. 

 Such approaches with different strain (or strain rate) parameters for the whole 

region or different sub-regions or even triangular sub-regions have been used by 

many authors, e.g., Frank (1966), Scholz & Fitch (1969), Savage & Burford 

(1970), Bibby (1973), Savage & Burford (1973), Savage & Prescott (1973), 

Bibby (1975), Thatcher (1975), Prescott (1976), Savage & Prescott (1976), 

Bibby & Walcott (1977), Savage, Prescott, Lisowski & King (1978), Fujii & 

�akane (1979), Prescott, Savage & Kinoshita (1979), Slawson & Savage (1979), 

Dunbar, Boore & Thatcher (1980), Bibby (1981), Prescott (1981), Savage, 

Lisowski & Prescott (1981a), Savage, Lisowski & Prescott (1981b), Savage, 

Prescott, Lisowski & King (1981), Bibby (1982), Lambeck & Coleman (1984), 

Snay (1986), Kasser et al. (1987), Drew & Snay (1989), Feigl, King & Jordan 
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(1990), Grant (1990), Reilly & Gubler (1990), Darby & Williams (1991), Snay 

& Matsikari (1991), Liu, Zoback & Segall (1992), Reilly et al. (1992), Deniz et 

al. (1993), Dong (1993), Donnellan, Hager, King & Herring (1993), Stiros 

(1993), Fujii (1995), Davies (1996), Bawden, Donnellan, Kellogg, Dong & 

Rundle (1997), Davies, England, Parsons, Billiris, Paradissis & Veis (1997), 

Dong, Herring & King (1998), Duong & Feigl (1999), Calais et al. (2000), An-

zidei et al. (2001), Gan & Prescott (2001), Hamdy (2001), Jouanne, Hippolyte, 

Gamond & Martinod (2001), Savage, Svarc & Prescott (2001), Hunstad, Sel-

vaggi, D’Agostino, England, Clarke & Pierozzi (2003), Khazaradze & Klotz 

(2003), �avarro, Catalão, Miranda & Fernandes (2003), Ruiz et al. (2003), Vi-

gny et al. (2003), Savage, Gan, Prescott & Svarc (2004), Savage, Svarc & Pres-

cott (2004), Hamdy, Park & Lim (2005), Serpelloni, Anzidei, Baldi, Casula & 

Galvani (2005), Delikaraoglou, Billiris, Paradissis, England, Parsons & Clarke 

(2006), Kotzev, �akov, Georgiev, Burchfiel & King (2006), Palano et al. (2006), 

Walpersdorf et al. (2006), Simons et al. (2007), Reddy & Sunil (2008). 

 A shortcoming of the linear model is its inability to take into account the inter-

polation error and the method works well only when strain parameters vary little 

between adjacent sub-regions. In contrast to the finite element method with trian-

gular elements, the existence of the interpolation is manifested in the accuracy of 

the results though not in the proper way. Indeed when the linear model fails to fit 

the local behaviour of the displacements the estimated observation residuals be-

come large and the estimated covariances are inflated by a large a-posteriori vari-

ance 2
σ̂ . However these accuracy estimates are based on the assumption that the 

observation errors are a zero-mean white noise, while the true errors are affected by 

the strongly correlated displacements in neighbouring points. This spatial correla-

tion is properly taken into account in the collocation method for the interpolation of 

displacements or velocities ( paragraph 6). 

 
 

4. The problem of datum definition and invariance of strain pa-

rameters 

 In deformation studies it is necessary to differentiate between “absolute” net-

works where some points are remaining fixed in time and “relative” networks 

where all points are moving (Chrzanowski, Chen & Secord, 1983). Of course the 

eventual increase in observational accuracy has limited the relevance of absolute 

networks to engineering level studies only while, even global networks are relative 

ones. In any case, the choice of reference system affects the computed displace-

ments and the non-invariant of the strain parameters. In absolute networks the ref-

erence system must be chosen once for the sub-network of fixed points. In relative 

networks a reference system must be chosen for every observation epoch. Among 

the strain parameters some are independent while others are affected by the choice 

of the reference system, always in relation to the type of available observations. 
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The principal strains 
max
e , 

min
e  and maximum shear strain γ  are always invariant. 

Dilatation Δ  is an invariant only when distance observations have been performed 

in both epochs with the same unit of distance (through calibration of the relevant 

instruments) otherwise it is affected by the choice of scale at the epochs where only 

angles are observed. The rotation ω  depends by the choice of orientation in both 

observation epochs, except when azimuths have been observed in both epochs. 

However the accuracy of azimuths is so relatively low that invariance of ω  cannot 

be practically claimed. In any case the effect is a common constant added to all 

rotations so that differences (relative rotations) between different sub-regions (or 

points when displacements are interpolated) remain invariant. The choice of origin 

for both epochs adds a constant translation to all sub-regions so it does not affect 

relative translations. When distances are observed relative translation vectors main-

tain their magnitudes but their orientation changes by an angle common to all. 

 The first study for the invariance of strain parameters as derived in the infini-

tesimal approach was given by Dermanis (1981). His results show that the effect 

of reference system choice is somewhat different from what was expected in view 

of the tensorial character of the strain tensor as a result of the approximations. Van 

Mierlo (1982) studied the related problem of the estimability of strain parameters, 

determining which of their linear combinations can be estimated for different ob-

servation types. Dermanis (1985), gave criteria of invariance in the case where a 

method of displacement interpolation is used for the derivation of strain parame-

ters. Dermanis & Grafarend (1992), studied the invariance of strain parameters 

without the approximations of the infinitesimal approach in both the horizontal and 

three-dimensional case. Xu, Shimada, Fujii & Tanaka (2000), studied the es-

timability of both strain parameters and three-dimensional relative translations. 

 In the older days the reference system was usually introduced in horizontal net-

works by fixing the coordinates of one point and one azimuth (minimal constraints) 

and the datum defect problem was resolved in deformation studies by fixing the 

same point and azimuth in both epochs. Meissl (1962, 1969) introduced a different 

approach to the single epoch datum problem. He proposed a best fitting of the net-

work to the imaginary network formed by a set of approximate coordinates, in 

which case the reference system of the approximate network passes over to the real 

one. From the algebraic point of view the best fitting criterion T T

i ii
= =∑x x x x  

min= , where 
i

x  are the corrections to the approximate coordinates 0

i
x  of station 

i , is equivalent to a set of “inner constraints” T T

i ii
= =∑E x E x 0 , with 

 
0 0

0 0

1 0

0 1

i i

i

i i

y x

x y

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

E , 

0 0 0

0 0 0

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

i i i

i i i i

i i i

z y x

z x y

y x z

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎣ ⎦

E  (13) 
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for the 2- and 3-dimensional case respectively. For horizontal networks the first 2 

columns of 
i

E  take care of the datum origin defect, the 3rd of the orientation and 

the 4th of the scale. For 3-dimensional networks the first 3 columns of 
i

E  take care 

of the datum origin defect the columns 4-5-6 of the orientation and the 7th of the 

scale. Thus the last column of 
i

E  should be removed when distances are observed. 

The application of the inner constraints T
=E x 0  in the adjustment of the observa-

tion equations = +b Ax v , 2 1~ ( , )σ
−

v 0 P , produces the “inner coordinates” ˆ

+
x  

which are the same as those produced by taking the pseudoinverse of the singular 

normal equations matrix ( )T T+

+
=x A PA A Pb . The inner coordinates can be also 

computed by an easy to perform transformation of any coordinate solution x  pro-

duced by any minimal constraints, namely 

 1[ ( ) ]T T−

+
= = −x Hx I E E E E x , (14) 

thus avoiding the explicit or implicit use of the pseudoinverse. 

 The first to apply the ideas of Meissl to deformation studies has been Brunner 

(1979), for 3-dimensional networks, while the case of horizontal networks has been 

treated in Brunner, Coleman & Hirsch (1981) (see also Margrave & �yland, 

1980). When displacements 
+ + +

′= −u x x  are produced by differences of inner co-

ordinates they are minimized (in the sense that min
T

=u u ) and the effect of datum 

defects on strain parameters is filtered out. At first sight it is not obvious at all why 

the best fitting of both epoch networks to a common approximate network guaran-

tees the best fitting to each other and rigorously speaking this is not the case. It can 

be proved however that within the linearization approximation for small rotation 

angles and scale factor close to one, 
+

u  is the same as the one obtained by 

'
+
= −u x x� , where 1' ( ) ( )T T−

′ ′= − −x x E E E E x x�  results from the coordinate trans-

formation of ′x  which best fits the first epoch coordinates x . This means that 
+

u  

can be obtained by directly applying the same transformation 
+
=u Hu  to the dis-

placements ′= −u x x  resulting from any minimally constrained solutions. An al-

ternative procedure is to use the coordinates x  of the first epoch adjustment pro-

duced by any minimal constraints as approximate coordinates for the second epoch 

so that ′ =x u  and the inner coordinates 
+ +
′ =x u  satisfy min

T
=u u . If a rigid (or 

similarity) transformation can be applied to the second epoch coordinates ′x  to 

best fit them to those of the first epoch x , either by a rigorous non-linear solution 

or by an iterative one through linearization, even smaller displacements can be 

produced. 

 The first two inner constraints have the form 0 01 1

C i i C� �

i i

x x x x≡ = ≡∑ ∑ , 

0 01 1

C i i C� �

i i

y y y y≡ = ≡∑ ∑ , which means that the network barycenter is main-
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tained. The third can be written 0 0(1/ ) ( ) 0
i i i ii

D y x x yδ δ− + =∑  where 

2 2 2( )
i ii

D x y= +∑ , meaning that displacements are minimized in all directions. 

Prescott (1981), introduced the idea of “outer coordinates”, which result by main-

taining the first two “translation” constraints and replacing the third “orientation” 

constraint with 0(1/ ) 0
i ii

E y xδ =∑ , where 2 2

ii
E y=∑  so that only displacements 

along the x -axis are minimized, while displacements in the direction of the y -axis 

are free to become larger. In situations where it is a priori known that displace-

ments should occur in the direction of the fault, the outer coordinates can be used 

by rotating the reference system so that the y -axis takes the direction of the fault. 

The method, which met some popularity, lacks serious theoretical but also opera-

tional foundation since it fails to distinguish between relative motion and deforma-

tion, as already done by Whitten (1960) and Whitten & Claire, 1960 in similar 

situations (see paragraph 8). 

 A more reasonable proposal have been the “special stations solution” of Gu & 

Prescott (1986), see also Segall & Mathews (1988), where not all but only the 

displacements of a selected set of “fixed” stations are minimized. Similar ideas 

however for such “partial inner constraint” solutions, including appropriate statisti-

cal tests, had already been introduced in the geodetic literature, see e.g. Koch & 

Fritsch (1981), �iemeier (1981). 

 When multiple epochs are involved, e.g. in coordinate series from GPS perma-

nent stations, in principle a different reference system must be defined for every 

epoch. However the coordinates per epoch are not independent since they must 

vary slowly and in a smooth way except for episodic changes associated with 

earthquakes, landslides, antenna changes, etc. Thus the evolution of coordinates 

must be modeled by either deterministic or stochastic tools (Dermanis & Rossi-

kopoulos, 1988). The simplest model, already applied for two epoch studies is the 

linear evolution in time 
0 0

( )
t

t t= + −x x v , involving initial coordinates 
0 0

( )t=x x  

and velocities v . In this case the displacement 
0

( )
t

t t= −u v  and the displacement 

gradient 
0

( ) /
t

t = ∂ ∂ =J u x
0 0

( )[ / ]t t− ∂ ∂v x  are replaced by the velocity v and the 

velocity gradient 
0

/= ∂ ∂ =L v x J� . The problem is that a time-dependent coordinate 

transformation, e.g. 
t t t t
= +x R x d�  fails to reserve the linear in time character of the 

untransformed model. For this reason only model-preserving transformations are 

allowed for each independent tectonic block such as a rigid motion 
t t
= +x Rx d�  in 

the plane (R  and d  constant) or a rigid rotation around a fixed pole with constant 

angular velocity. Such transformations involve parameters which must be deter-

mined in a way that the reduced velocities v�  are minimized in a least-squares 

sense. More details are given in paragraph 8. 
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5. Alternatives to the linear model for displacements 

 Several authors have tried to go beyond the linear model by interpolating dis-

placements u  or velocities v  for the computation of strains or strain rates, intro-

ducing models of the form ( ) ( , )=u x u x a  with a  being unknown coefficients to be 

estimated from the available data ( )
i i
=u u x . The most obvious choice for each 

displacement component is the use of polynomials or more generally models of the 

form ( )f P =

1
( )

m T

k k Pk
a Pϕ

=

=∑ φ a  with ( ) ( )
P k k

Pϕ=φ , where ( )
k
Pϕ  are known 

“base” functions. Taking into account the observational errors 
i
e  the observation 

model becomes 
1

( ) ( )
m

i i i k k i ik
f f P e a P eϕ

=

= + = +∑ , 1,...,i n= , m n< , or 

= +f Φa e  with ( )
ik k i

PϕΦ = . From a least squares fitting min
T

=e Pe  the coeffi-

cient estimates and the interpolating function are obtained 

 ˆ ( )T T
=a Φ PΦ Φ Pf , ˆ ˆ( ) ( )T T T T

P P
f P = =φ a φ Φ PΦ Φ Pf . (15) 

 Polynomial models have been used by Haines (1982), though not for strain 

determination but for the interpolation of strain rates in order to obtain vector fields 

through integration. The same method has been applied by Walcott (1984). 

Chrzanowski, Chen, & Secord (1983) were the first to propose polynomial mod-

els for displacements though they used only the linear part in their applications. 

Polynomial models have been used e.g. by Kato & �akajima (1989), Darby & 

Williams (1991), Clarke (1996). Legendre and Hermite polynomials have been 

used by Asteriadis, Schwan & Arabelos (1988).  

Chebychev polynomials have been used by Sato, Miura & Tachibana (1993). 

 Haines & Holt (1993) introduced a method for the determination of a continu-

ous velocity field from strain rates obtained from the summation of earthquake 

moment tensors, which was later modified for the interpolation of velocities and 

the determination strain rates. Since a rigid rotation on the sphere with rotation 

vector ω  results in a velocity field ( ) [ ]= ×v x ω x , for a general field ( )v x  resulting 

from a non-rigid deformation there exists a unique vector ( )ω x  void of any precise 

physical meaning (points do not rotate!) such that ( ) [ ( ) ] [ ] ( )= × = − ×v x ω x x x ω x . 

They modeled the 3 components of ( )ω x  as truncated polynomials in powers of 

the 3 components of x . Wu, Shuai, Wang, Zhou & Li (1997) modified the 

method for the interpolation of GPS derived velocities and strain computation, us-

ing the same polynomial modeling of ( ) ( , ) ( )= =ω x ω x a B x a , where a  contains 

the unknown polynomial coefficients. Taking observation errors 
i
e  the observed 

velocities at each point i  become [ ] ( ) [ ] ( )
i i i i i i i
= − × + = − × + ≡v x ω x e x B x a e  

i i
≡ +A a e  and a least squares fit gives the coefficient estimates â , which provide 

the interpolated field ˆˆ ( ) [ ] ( )= − ×v x x B x a . Of course the method is equivalent to a 

certain type of direct modeling of ( )v x  by polynomials, since if the vector ( )B x a  

has polynomial components so does ( ) [ ] ( )= − ×A x a x B x a . The only advantage is 
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that the zero order term coefficients 
0

α  in ( )ω x  give the common rotational rigid 

motion of a sub-region with rotation vector 
0

=ω α  while the remaining coeffi-

cients describe the deformation within the sub-region. Haines, Jackson, Holt & 

Agnew (1998) and Kreemer, Haines, Holt, Blewitt & Lavallee (2000), addressed 

the same problem using instead of polynomials bicubic splines on a curvilinear 

grid. 

 A related method of interpolation is that of piece-wise polynomials or splines 

with smoothness conditions imposed at the boundaries of their domains. Spline 

interpolation has been used by Altiner (2001) for velocities and Kreemer, Holt & 

Haines (2003) who used bi-cubic Bessel splines for the interpolation of velocities 

and model strain rates. The “splines in tension” method of Wessel & Bercovici 

(1998), has been used for the interpolation of velocities by Jin & Park (2006) and 

Gan et al. (2007). 

 Another type of interpolation methods are the “moving” or “localized” interpo-

lations which are applied separately at any point of interest P  (moving) and treat 

the available data at points 
i
P  in relation to their relative positions with respect to 

P  (localized). Shen, Jackson & Ge, (1996) use such a method where (separately 

for every point P ) strain rates corresponding to a spatially linear velocity field are 

fitted to the observed velocities with an additional modification of their covari-

ances. All covariances between velocity components at data points 
i
P  and 

k
P  are 

multiplied by a factor 
2 2 2 2
/ /

e
i D k D

d d

ik
e

σ σ

λ =  depending on their distances 
i

i PP
d d= , 

k
k PP

d d=  from P , 
D

σ  being a constant. The locally applied method is equivalent 

to replacing the observed velocities 
i

v  with their “shrunk” versions 
2 2
/

e
i D

d

i i i

σ

λ =v v  

(
ik i k

λ λ λ= ) and modifying their covariances accordingly. Since 0
i

λ →  as 

i
i PP

d d= →∞ , the solution depends more on the velocities of the neighbouring 

points and less on the more distant ones. The method has also been used by Sagiya, 

Miyazaki & Tada (2000), Sagiya (2004), Sagiya, �ishimura & Iio (2004) and 

D’Agostino & Selvaggi (2004). A moving-localized interpolation method has also 

been used by Clarke et al. (1998), who estimated velocity gradients separately for 

each point on a grid by using only observed velocities within a fixed distance, pro-

vided that there exist at least 4 such points. 

 Some authors take advantage of the free software for interpolation on a grid, 

and derive strains from the numerical differentiation of the grid velocity values. 

The GMT (General Mapping Tools) of Wessel & Smith (1991, 1995) has been 

used e.g. by Miura, Sato, Tachibana, Satake & Hasegawa (2002), Miura, Sato, 

Hasegawa, Suwa, Tachibana & Yui (2004), Takayama & Yoshida (2007). 

 An interesting alternative to classical deterministic and stochastic models for 

deriving the velocity field from discrete data is the robust smoothing and explora-

tory data analysis (EDA) of Toya & Kasahara (2005). 
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6. Strain parameters from minimum mean square error  

prediction (collocation) 

 A method to interpolate the 2 components of discrete displacements ( )
i i

P=u u  

available at discrete points 
i
P , 1,...,i n= , is through the use of minimum norm in-

terpolation utilizing a model where a function is modeled as a linear combination 

1
( ) ( )

m

k kk
f P a Pψ

=

=∑  of known base functions ( )
k
Pψ , 1,...,k m= , with m n> . 

For the available data the equations 
1

( ) ( )
m

i i k k ik
f f P a Pψ

=

≡ =∑ , which can be writ-

ten in the matrix form =f Fa  with ( )
ik k i

F Pψ= , have infinite number of solutions. 

A unique one is obtained by minimizing the norm 
2 T
=a a Wa , where the 

“weight” matrixW  is a symmetric positive definite matrix, which can be taken to 

be diagonal without loss of generality (if not, a change to base functions with di-

agonal weight matrix can be applied by taking appropriate linear combinations of 

the original ones). The well known solution is given by 1 1 1ˆ ( )T T− − −

=a W F FW F f  

and setting ( ) ( )
P k k

Pψ=f  the interpolated value at any point P  becomes 

 1 1 1

1

ˆ ˆˆ( ) ( ) ( )
m T T T T

k k P Pk
f P a Pψ

− − −

=

= ≡ =∑ f a f W F FW F f . 

 If the two point function 1

1
( , ) ( ) ( )

m

kk k kk
k P Q W P Qψ ψ

−

=

=∑  is introduced the in-

terpolated value takes the form 1( ) T

P
f P −

= k K f  where ( , )
ij i j

K k P P=  and 

( ) ( , )
P i i

k P P=k . This solution can be obtained on the basis only of the function 

( , )k P Q  without specifying the base functions and the weight matrix. However if 

we set 2
1/

kk k
W σ=  and interpret 2

k
σ  as the variances of the corresponding coeffi-

cients 
k

a , taken as zero mean random numbers, the function 

1
( ) ( )

m T

k k Pk
f P a Pψ

=

= =∑ f a  becomes a zero-mean random field with covariance 

function  

 1( , ) { ( ) ( )} { } { }T T T T T

P Q P Q P QC P Q E f P f Q E E −

≡ = = = =f aa f f aa f f W f  

  1

1
( ) ( ) ( , )

m

kk k kk
W P Q k P Qψ ψ

−

=

= =∑ . 

 In such a stochastic interpretation the interpolated value ˆ ( )f P  is the prediction 

of the random variable ( )f P  having minimum mean square error among all linear 

combinations { } 1
( ) ( )

i

n

i ii
f P f P
λ

λ γ
=

= +∑  of the data, which are unbiased: 

{ }{ ( )} { ( )}
i

E f P E f P
λ

= . The optimal prediction is now given by 
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 1ˆ ( ) T

P
f P −

= c C f , ( , )
ij i j

C C P P= , ( ) ( , )
P i i

C P P=c . (16) 

 The method for the interpolation of a single function has been already intro-

duced in its stochastic set up by Moritz (1962) but it was Krarup (1969) who fully 

understood its deterministic aspects and potential and coined the name collocation 

for it. Introducing the “law of covariance propagation” he generalized the method 

to the case where observed and predicted values are not simply point values ( )
i

f P  

of the function but rather the values of any continuous linear functionals ( )
i

L f . In 

our case where we want to predict the 4 elements of the displacement gradient ma-

trix /= ∂ ∂J u x , the function f  becomes in turn one of the displacement compo-

nents 
1
( )u P , 

2
( )u P  and the predicted values become the linear functionals of the 

form 
,

( ) ( ) [ / ]( )
mn n P m m n

J P L u u x P= = ∂ ∂ . If the noise v  in the data is taken into 

account, assumed to have zero mean and covariance matrix 
v

C , the optimal predic-

tion takes the form 1ˆ ( ) ( )T

P
f P −

= +
v

c C C f  or in our case 

 1( ) ( )
T

P

mn

n

J P
x

−

∂
= +
∂

v

c
C C u , , 1,2m n = , 

 ( , )
m

ik u i k
C C P P= , ( ) ( , )

m
P i u i

C P P=c  ( )
k m k

u u P= , (17) 

involving two covariance functions ( , )
m

u
C P Q  for the two displacement compo-

nents 
1
( )u P , 

2
( )u P  and assuming that they are uncorrelated. Instead of the zero 

mean assumption for the functions ( )
i
u P  an unknown mean function can be used, 

which is modeled as a trend ( , )
m
Pµ x  involving a set of unknown parameters x . 

The proper model in this case is the “least squares collocation” of Moritz (1978) 

 = + +b Ax s v  (18) 

where b  contains the observed displacements ( )
m i

u P , s  contains the stochastic 

signals ( )
m i

u Pδ  remaining after removing the modeled by Ax  trend ( , )
m i
Pµ x  

from ( )
m i

u P  and v  is the data noise. Under prediction is a new set of signals ′s  

containing the displacement gradient elements m

mn

n

u
J

x

δ∂
=

∂
. It is assumed that s , 

′s  and v  have zero means and known covariance matrices 
s

C , 
′s

C , 
′s s

C , =
sv

C 0 , 

′

=
s v

C 0 . The solution is obtained by first solving the least squares problem 

= +b Ax e , with = +e s v  and weight matrix 1 1( )− −

= = +
e s v

P C C C  to obtain the 

estimate 1ˆ ( )T T−

=x A PA A Pb  and then apply the collocation prediction to the re-

duced model ˆ− = +b Ax s v  to obtain the prediction  
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 1ˆ ˆ( ) ( )−

′
′ = + −

s s s v
s C C C b Ax , 1[ ( ) ]T T T−

′ ′ ′
= − −

e s s s s s
C C C P PA A PA A P C  (19) 

where 
e

C  is the covariance matrix of the prediction error ˆ′ ′= −e s s . 

 Collocation was first introduced in the determination of strain parameters by 

Dermanis, Livieratos, Rossikopoulos & Vlachos (1981) who gave all the neces-

sary equations for its numerical implementation and applied it to the seismic areas 

of Volvi in Greece and Friuli in Italy (Bencini, Dermanis, Livieratos & Rossi-

kopoulos, 1982). Straightforward stochastic prediction in the pre-collocation sense 

of Moritz (1962) has been applied for the interpolation of vertical crustal motions 

(Hein & Kistermann,1981, Fujii & Xia, 1993, El-Fiky, Kato & Fujii, 1997). The 

method was again taken again into consideration rather independently in Europe 

(Danuser, Geiger & Muller 1993) and Japan (El-Fiky, 1998). A considerable 

number of applications followed in the next years: Kahle et al. (1995), Straub 

(1996), Straub, Kahle & Schindler (1997), Kato, El-Fiky & Oware (1997), 

Kahle et al. (1998), El-Fiky & Kato (1999), El-Fiky, Kato & Oware (1999), 

Kahle et al. (1999), El-Fiky & Kato (1999), Reddy, El-Fiky, Kato, Shimada & 

Kumar (2000), Kato & El-Fiky (2000), Li, Miyashita, Kato & Miyazaki (2000), 

El-Fiky (2000a), El-Fiky (2000b), Kahle et al. (2000), Kumar, Miyashita & Li 

(2002), Caporali (2003), Hollenstein, Kahle & Geiger (2006), El-Fiky & Kato 

(2006), Wu, Tang, Chen & Li (2006), Tesauro, Hollenstein, Egli, Geiger & 

Kahle (2006), Egli, Geiger, Wiget & Kahle (2007), Hollenstein, Müller, Geiger 

& Kahle (2008), Biagi & Dermanis (2009).  

 There are two approaches to the choice of the covariance function to be used. 

The Japanese researches having dense networks with many points in their disposal 

they compute a “sample covariance function” as a set of value pairs 
k
r , 

1

(1/ )
k PQ k

k k P Qr r r
C � f f

+
≤ <

= ∑ , to which an exponential model is fitted, while inter-

polation is carried in a planar domain. The European researches dealing with more 

modest networks use an inverse quadratic function 2 2 2

0 0 0
( ) /( )C r C r r r= + , with 

0
(0)C C=  and a correlation length 

0
r  (defined by 1

0 02
( )C r C= ) equal to the mean 

distance between the stations. Kahle et al. (1995) use a 3-dimensional interpolation 

domain and strain parameters are computed by restricting the 3-dimensional dis-

placement gradient to the local horizontal plane. Also a quasi-spherical approach is 

sometimes used (e.g. Straub, Kahle & Schindler, 1997), Kahle et al., 1998) 

where the covariance function is expressed in terms of the spherical distance, 

though without taking into account the meridian convergence. 

 Biagi & Dermanis (2009) found both approaches unsatisfactory in a central 

Japan application, since they always give ( ) 0C r > , while the sample covariances 

exhibited a strong negative correlation after a certain distance. They predict geo-

detic coordinate velocities /d dtλ λ=
� , /d dtφ φ=

�  on the reference ellipsoid lo-

cally approximated by a best fitting sphere. Typically homogeneous and isotropic 
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covariances are used which are functions of the point distance. Egli, Geiger, Wiget 

& Kahle (2007) treat also the case where sample covariance functions appear to be 

inhomogeneous and anisotropic. 

 While collocation was developed initially for the study of the gravity field, a 

method for the prediction of ore reserves has been independently developed in min-

ing geostatistics, which under the name of kriging found also application in other 

fields, including the study of crustal deformation (Ayhan et al., 2002, van den 

Boogaart & Drobniewski, 2002, Zhu, Cai & Shi, 2006, Aktuğ & Kiliçoğlu, 

2006). Kriging is practically equivalent to collocation with a slight theoretical dif-

ferentiation, which instead of the covariance function implements the variogram 
21

2
( ) {[ ( ) ( )] } (0) ( )r E f P f Q C C rγ ≡ − = −  and has the (practically irrelevant) ad-

vantage that it can be applied to random fields which possess a variogram but not a 

covariance function. As explained by Dermanis (1984), both collocation and 

kriging produce optimal (best) predictions in the sense of the minimization of the 

mean square prediction error. The difference is that collocation is the “best inho-

mogeneous linear prediction”, where optimization takes place among all predic-

tions of the form  
1

( )n

i i i
f Pλ γ

=

Σ + , while kriging is the “best homogenously linear 

prediction”, where optimization takes place among all predictions of the form 

1
( )n

i i i
f Pλ

=

Σ . For a zero mean random field f  the constant term γ  in collocation 

vanishes and both methods give identical results. Universal kriging is a variant 

which produces exactly the same results as the least squares collocation with a 

modeled trend (non-zero mean). The only potential advantage of kriging appears in 

the case of a constant non-zero mean { }E f µ= , where in contrast to the case of 

collocation the value of µ  can be unknown. A generalization of kriging, similar to 

that of Krarup (1969) to the stochastic prediction of Moritz (1962), has been 

given by Reguzzoni, Sansó & Venuti (2005). 

 

 

7. Crustal deformation analysis beyond the plane domain 

 Strictly speaking crustal deformation of the earth is a three-dimensional process 

just like the deformation of any material body. When we use planar methods in 

crustal deformation we do not refer to the deformation of any actual material plane 

surface but rather to the deformation of an abstract plane formed by projecting 

points at the surface of the earth on a horizontal reference surface. 

 Realizing this shortcoming some authors tried to apply three-dimensional de-

formation methods to the analysis of geodetic deformations. Brunner (1979), has 

proposed the analysis of the 3-dimensional displacement gradient 
1 1

2 2
( ) ( )T T

= + + − = +J J J J J E Ω  into a symmetric (infinitesimal strain) part E  

and an antisymmetric part [ ]= ×Ω ω  having ω  as its axial vector. The infinitesimal 

strain part contains the “extensions in the directions of the axes” 
i ii

Eε =  in its di-
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agonal and the “shearing strain components” 2
ik ik

Eγ =  outside the diagonal. The 

displacements 
i

u  produced from the coordinate variations in a 3-dimensional net-

work are assumed to be linear functions of the (approximate) coordinates 
i

x , i.e., 

i i i
= =u Jx C s  over the network area, easily expressed as linear functions of the 9 

strain parameters 1 1 1

1 2 3 12 23 13 1 2 32 2 2
[ ]

T
ε ε ε γ γ γ ω ω ω=s . For all points 

i
P , taking 

also errors 
u

v  into account, the strain parameters are estimated from the least 

squares solution to the total adjustment model = +
u

u Cs v . The use of 3-

dimensional networks and deformation parameters was also suggested by Reilly 

(1982, 1987, 1990), Pietrantonio & Riguzzi (2004). A 3-dimensional stain analy-

sis in the framework of a 3-dimensional finite element method with quadrilateral 

elements has been used by Kiamehr & Sjöberg (2005). 

 The problem with 3-dimensional crustal deformation analysis is that discrete 

observation data are limited to the 2-dimensional surface of the earth. While inter-

polation in the horizontal sense is meaningful and can be in principle improved by 

network densification, the extraction of 3-dimansional strain parameters requires an 

extrapolation in the third vertical direction which is not supported by the data at 

hand. However it is the most relevant approach in engineering applications when 

man-made structures are monitored by networks that extend equally in both the 

horizontal and vertical direction. 

 The planar approach despite the abstract (no material) character of the deform-

ing surface is justifiable from a geophysical point of view. Geophysical processes 

affecting horizontal motions are of a different nature compared to those affecting 

vertical ones and in this respect it makes sense to study horizontal deformation 

separately from height variations as in fact is routinely done. 

 The planar approximation is satisfactory when the network is of small size so 

that the variation of coordinates on a cartographic plane can be used. This is per-

missible since the deformation from the actual horizontal surface, the ellipsoid, to 

the cartographic plane under a “locally centered” map projection is negligible for 

small areas. For more extensive networks the curvature of ellipsoid or its spherical 

approximation must be rather used. The problem has been rigorously solved by 

Biagi & Dermanis (2009) who using appropriate differential geometry tools de-

termined that the deformation gradient = +F I J  to be used for the usual 2-

dimensional strain analysis at any point on a reference ellipsoid (with major semi-

axis a  and eccentricity e ) is given by 

 

0 0

0 0

0 0 0 0

0 0

cos

cos cos

cos

M M

M �

� �

M �

λ λ

λ φ φ

φ φφ φ

λ φ φ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎣ ⎦

F   (20) 
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where 
0

λ , 
0

φ  are the geodetic coordinates at the initial epoch 
0
t  and λ , φ  the 

coordinates at a later epoch t , 2 2 2 3/ 2( ) (1 )(1 sin )M M a e eφ φ −

= = − − , 
2 2 1/ 2( ) ( sin )� � a eφ φ −

= = − , 
0 0

( )M M φ=  and 
0 0

( )� � φ= . Pope (1966) (see also 

Snay & Cline, 1980) gave formulas for the computational of the strain parameters 

which (apart from an obvious sign error) are equivalent to the use of the matrix 

 
0 0

0 0

1

cos

cos

λ λ

λ φ φ

φ φ
φ

λ φ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

F   (21) 

φ  being the mid-latitude of the network region. Drew & Snay (1989) gave formu-

las, which are equivalent to the use of the matrix 

 
0 0

0 0

cos

cos

�

M

M

�

λ φ λ

λ φ

φ φ

φ λ φ

⎡ ⎤∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

F  (22) 

with ( )� � φ= , ( )M M φ= , φ  being the latitude of the “reference” origin. They 

do not give any clue to how their equations were derived or any related reference to 

the literature. 

 Savage, Gan & Svarc (2001) start from the 3-dimensional case relating dis-

placements u
λ

, uφ , 
r

u  in a local spherical system (east, north, zenith) to the 

spherical components of the strain tensor 
λλ

ε , λϕε , 
rλ

ε , 
ϕϕ
ε , 

rϕ
ε , 

rr
ε  and the rota-

tion vector 
λ

ω , 
ϕ

ω , 
r

ω  and arrive by restriction to the spherical surface to an ex-

pression (eq. A6) of the form 

 0

0

( , )cos ( ) cos ( )

( , )( ) ( )

r

r

u ar r

u ar r

λ λ λ ϕ λλ λϕ

ϕ ϕ λ ϕ λϕ ϕϕ

ω ω ε ε ωϕ λ λ ϕ λ λ

ω ω ε ω εϕ ϕ ϕ ϕ

−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ +− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  
cos ( )

( )

a r

a r

λ

ϕ

ϕ λ λ

ϕ ϕ

⎡ ⎤ ⎡ ⎤−
= +⎢ ⎥ ⎢ ⎥

−⎣ ⎦⎣ ⎦
J  (23) 

where λ , ϕ , r  are coordinates of the network midpoint. The strain parameters 

are derived from the displacement gradient = −J F I , which corresponds to the 

choice of F  given by eq. (21). The same approach has been used by Savage, 

Svarc & Prescott (2004), Hammond & Thatcher (2004, 2007). Note that in addi-

tion to the strain components and the rotation 
r

ω  within the spherical horizontal 
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plane, the rotation components 
λ

ω , 
ϕ

ω  are also simultaneously estimated, which 

give rise to the “within the sphere” translations a
λ

, a
ϕ

, i.e. to a rigid rotation 

around an Euler vector. 

 Another alternative, based on the fact that observations are limited on the earth 

surface, is the computation of strain parameters of the natural earth surface con-

ceived as a 2-dimensional material shell. This approach has been introduced by 

Altiner (1996, 1999) and Voosoghi (2000) and has been applied to several studies, 

e.g. Haas, Gueguen, Scherneck, �othnagel & Campbell (2000), Hefty & Dura-

ciova (2002), Grafarend & Voosoghi (2003), Klek, Ragowski & Jarosinski 

(2003), Altiner, Marjanovic, Medved & Rasic (2006), Moghtases-Azar (2007), 

Moghtased-Azar & Grafarend (2009). The method has the advantage that it in-

corporates simultaneously height variation information but has a serious defect 

from the geophysical interpretation point of view. Indeed crustal deformation re-

mains a 3-dimensional process and the strain parameters derived by the method 

correspond to a section of the crust by a plane tangent to the surface at each par-

ticular point rather than to an independently deforming 2-dimensional material 

shell. Thus a trace of the actual 3-dimensional deformation is looked at from a di-

rection (surface normal) which is different at any surface point, especially in re-

gions with highly undulating terrain. On the contrary the classical horizontal treat-

ment looks at a trace of the 3-dimensional deformation from an always vertical 

direction (normal to the plane, sphere or ellipsoid), i.e. from a direction compatible 

with the separation of the geophysical causes into those affecting horizontal motion 

(e.g. plate and tectonic block motions) and those affecting vertical motion (e.g. 

postglacial uplift or hydrological effects). 

 

 

 

8. Separating deformation from relative motion 

 When analyzing observations it is essential to separate the relative motion of 

separate tectonic blocks from the deformation within each block. Such block-

related deformation can be expressed either by strain parameters considered con-

stant over the block, or by strain parameter fields varying continuously over the 

block when a displacement interpolation model is used. This reflects the typical 

inefficiency of standard interpolation methods such as collocation to represent dis-

continuities in the data and they must hence be applied in a piecewise manner. The 

need to separate relative motion from deformation had already been realized by 

Whitten (1960) (see also Whitten & Claire, 1960) who analyzed fault crossing 

observations using a model combining a shear in the fault direction with a dis-

placement of one fault side with respect to the other. Chrzanowski was the one to 

strongly emphasize the separation of rigid motion from deformation (see e.g. 

Chrzanowski, Chen, & Secord, 1983) in contrast to typical cross-faulting applica-
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tions where the derived large strains reflected a relative slippage along the fault 

rather than a pure deformation. 

 While rigid motion in the planar case is represented by 2 translations and 1 rota-

tion, in the study of larger areas analysis must be carried on the surface, where the 

equivalent rigid motion (at least for geologically small time intervals) is a rotation 

around a fixed pole (unit vector ( , )
P P

n n λ φ=

� �

) with constant angular rate ω . The 

corresponding rigid motion parameters are either the 3 Cartesian components of 

rotation vector nω ω=

� �

, usually referred as “Euler vector”, or its spherical compo-

nents 
P

λ , 
P

φ , ω . Euler vectors over different sub-regions can be determined by a 

least squares fitting so that the residual velocity components after the removal of 

the rigid rotation of the whole block are minimized (see e.g. Koyama, 1996, Zhou 

et al., 1997, McClusky et al., 2000, McClusky et al., 2003, Bock et al., 2003, 

Shen, Lü, Wang & Bürgmann, 2005, �ishimura & Hashimoto, 2006). In addi-

tion to the a-priori removal of such rigid rotations it is possible to estimate them 

simultaneously with the strain related signals in a unified data analysis procedure. 

For example in collocation the components of Euler rotation vectors over different 

tectonic blocks can be incorporated in the trend parameters x  of the least squares 

collocation model = + +b Ax s v  (18). It is also possible to consider three-

dimensional rigid or even similarity transformations (3 rotations, 3 translations, 1 

scale factor) in order to remove rigid motion trends from the 3-dimensional veloci-

ties produced in GPS networks, either a-priori (Rossikopoulos, Fotiou, Livieratos 

& Baldi, 1998) or simultaneously within a data analysis procedure such as the least 

squares collocation (Kahle et al., 1995). A simultaneous estimation of the strain 

rate components in the tangent plane and the Euler vector has beed presented by 

Ward (1998a, 1998b). 

 There is absolutely no reason for a rigid motion within a sphere to have the 

form represented by a constant Euler vector with fixed pole and constant angular 

velocity. In the most general case the rigid motion may take place around a migrat-

ing pole with variable angular velocity. Realizing this fact Biagi & Dermanis 

(2009) introduced the concept of a different “discrete Tisserant” reference system 

for each separate tectonic block. It is defined by keeping constant the barycenter of 

the sub-network of the block and minimizing the relative kinetic energy of its 

points (visualized as mass points with the same mass) with respect to the new sys-

tem or equivalently by requiring that the relative angular momentum vector is van-

ishing. If there is a scale defect the mean quadratic length L  of the sub-network 

(defined by 2 T

i ii
L =∑ x x ) must be kept constant. Thus the original block motion is 

separated into a rigid motion of the whole Tisserand reference system around a 

time dependent Euler vector ( )tω

�

 and a deformation with respect to the Tisserand 

system which represents in an optimal way the block sub-network as a whole. A 

version of the same concept for applications on the plane has been presented by 

Biagi & Dermanis (2006) and Dermanis & Kotsakis (2006). 
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9. Quality assessment of strain parameters 

 There are two problems when formal covariance propagation is used to produce 

variances and covariances of strain parameters from those of the input data. The 

first is relating to the presence of additional modelling errors arising by the differ-

ences between the actual displacements or velocities and their interpolated predic-

tions. Note that strain parameters have the character of spatial derivatives and thus 

continuous knowledge of the displacement field must be in hand by some interpo-

lation method. The influence of this “interpolation” error is varying from complete 

negligence in the case of the finite element method, to improper reflectance in the 

a-posteriori variance when the linear displacement model is used over sub-regions 

and finally to its proper incorporation in the collocation method provided that the 

true covariance is known. Since the final assumption is certainly not fulfilled, the 

reliability of the produced error covariances for the elements of the displacement 

(or velocity) gradient matrix depends on the validity of a series of assumptions: the 

zero mean assumption (i.e. the proper removal or modelling of the signal trend), 

the assumption of homogeneity and isotropy of the displacement or velocity ran-

dom field and finally the ability to have a good sample covariance function from 

the data itself, which is possible only for very dense network with a large number 

of stations. 

 A second problem is the fact that strain parameters are nonlinear functions of 

the elements of the strain matrix, especially the eigenvalues. The same holds true 

for the singular values and the rigorous strain parameters of Biagi & Dermanis 

(2006, 2009). As a consequence covariance propagation based on linearization may 

not produce the correct covariances and even produce additional biases. (Liviera-

tos & Vlachos, 1981, Soler & van Gelder, 1991, Xu & Grafarend, 1996, Han, 

van Gelder & Soler, 2007, Cai & Grafarend, 2007a, 2007b). 

 Covariance propagation after linearization has the advantage that is free of any 

hypothesis about the distribution of the errors in the input data. Within a “second 

order” estimation and prediction methodology only the covariance and the (zero) 

means of the input data are required. Alternative methods for covariance propaga-

tion are Monte Carlo methods , which do not require a linearization. They have 

benn used for crustal starins by Jouanne, Menard & Jault (1994), Martinod et al. 

(1996) and Jouanne, Hippolyte, Gamond & Martinod (2001). Nevertheless, just 

like the tests of statistical hypotheses, they require complete knowledge of the 

probability distribution of the input data. Such knowledge is hardly ever at hand 

and researchers tend to resort to one of the most widespread scientific myths: that 

of the Gaussian distribution as a proper model for practically every type of data 

errors. 

 A final question concerns the credibility of the covariances of the input data as 

well as the hypothesis that the relevant estimates of displacements or velocities 

(which are the input data in many analysis approaches) are unbiased, i.e. free from 
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the influence of neglected systematic errors. Since nowadays crustal deformation 

studies are based of velocity estimates from permanent GPS stations their input 

covariances should not be the formal software-produced covariances of daily or 

weekly solutions, which are typically over-optimistic. Analysis of the produced 

coordinate time series demonstrates variations well above the formal noise level as 

well as strong periodic signals especially in the vertical component. Furthermore 

the noise in the series is not white but coloured with correlations in nearby epochs. 

There is a very large literature on the topic of obtaining realistic covariance matri-

ces of GPS station velocities but it lies outside the scope of the present work. 
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