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Abstract: Coordinate systems on a triaxial ellipsoid are summarized and presented, to-

gether with their geometrical interpretation. Firstly, the geodetic coordinate system is a 

generalization of the geodetic system on a biaxial ellipsoid. Then, the ellipsoidal coordinate 

system is a triply orthogonal system, related to the theory of potential. Finally, the geomet-

ric coordinate system, which is based on the previous systems, is interpreted. The three 

coordinate systems on a biaxial ellipsoid are obtained as degenerate cases. In addition, a 

method to compute the three curvilinear coordinates of each system is described. 

 

 

1. Introduction 

It is generally accepted in the geodetic community that a triaxial ellipsoid could 

better approximate the geoid than the biaxial ellipsoid. Furthermore, several non-

spherical celestial bodies such as planets, natural satellites, asteroids and comets 

are modeled by a triaxial ellipsoid. Also, present day accuracy requirements and 

modern computational capabilities encourage the study of the triaxial ellipsoid as a 

geometrical and a physical model in geodesy and related sciences. 
 
From a geometrical viewpoint, Shebl and Farag (2007) and Panou (2013) presented 

methods for the solution of the geodesic problem on a triaxial ellipsoid. Also, Klein 

(2012) gave a solution to the problem of the intersection of an ellipsoid and a 

plane. Furthermore, various map projections have been developed on a triaxial el-

lipsoid (Weightman 1961, Snyder 1985, Grafarend and Krumm 2006, Fleis et al. 

2013, Nyrtsov 2014). The geodetic (planetographic) coordinate system on a triaxial 

ellipsoid has been presented by Grafarend and Krumm (2006) and recently by Fel-

tens (2009), Ligas (2012a, b) and Bektaş (2014). On the other hand, the ellipsoidal 

coordinate system which is used in the classical textbooks of potential theory 

(Hobson 1931, Kellogg 1953, MacMillan 1958, Pick et al. 1973, Dassios 2012) and 

in works of Balmino (1994), Miloh (1990), Garmier and Barriot (2001), Hu (2012) 

and Lowes and Winch (2012) has disadvantages. To overcome these problems, 

Tabanov (1999) introduced new ellipsoidal coordinates and subsequently Panou 

(2014a, b) gave their geometrical interpretation. However, Caputo (1967) has de-

veloped the geometric coordinate system. The present paper reviews the triaxial 
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coordinate systems, including their geometrical interpretation. 
 
From a physical viewpoint, research on the theory of ellipsoidal figures of equilib-

rium began with Newton and has continued to the present day. The monograph by 

Chandrasekhar (1969) summarizes much of this research as of 1968, while some of 

the developments of the next thirty years are included in the work of Lebovitz 

(1998). 

 

 

2. Geodetic coordinates (h, φ, λ) 

In order to introduce a triaxial coordinate system, we consider a triaxial ellipsoid 

which, in Cartesian coordinates (x, y, z) is described by 
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where b < 
y

a  < 
x

a  are its three semiaxes (
x

a  = major equatorial semiaxis, 
y

a  = 

minor equatorial semiaxis, b = polar semiaxis). This ellipsoid has three principal 

ellipses, mutually perpendicular. For each ellipse, we can calculate the first eccen-

tricity 
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In a Cartesian coordinate system, a point P outside or inside of a triaxial ellipsoid 

has the coordinates (x, y, z). Similarly to a biaxial ellipsoid, the geodetic height h is 

the distance along the surface normal from the ellipsoid 
0

S  to the point P (see Fig-

ure 1). The geodetic latitude φ and geodetic longitude λ are related to the ellipsoi-

dal normal unit vector n = ( cosλ φcos , sinλ φcos , φsin ). Introducing the radius of 

curvature � of the prime vertical section in the components of this vector, the Car-

tesian coordinates of point Q on the triaxial ellipsoid are expressed: 

 (x, y, z) = ( cosλ φcos� , ( )21 cosφ sinλ-

e
� e , ( )21 sinφ-

x
� e ). (2) 

Substituting these expressions into (1), we obtain 

 λsinφcosφsin1
22222

 

exx
eea� −−= . (3) 

Also, inverting (2), we have 
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Fig. 1. Geodetic coordinates 
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On the other hand, the ellipsoidal normal vector can be calculated by applying the 

gradient operator in (1), i.e. η = 2(
2

x
ax , 

2

y
ay , 

2
bz ). Using the first eccentrici-

ties, we obtain three equivalent expressions for the ellipsoidal normal vector: 
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η , 
z1

η ) = ( ( )21-
x

x e , ( )21
y
ey − , z), (6) 
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3

η  = (
x3
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z3

η ) = (x, ( )21
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As pointed out in Feltens (2009), ellipsoidal normal vectors 
1
η , 

2
η , 

3
η  connect 

point Q on the ellipsoid with the z = 0, y = 0, x = 0 planes, respectively. Also, vec-

tor 
3

η  is the longest one, with magnitude equal to the radius of curvature of the 

prime vertical section, i.e. �=
3

η . 
 
From (4) and (6), the geodetic latitude φ is interpreted as the angle between the 

ellipsoidal normal vector and the projection of this vector onto the z = 0 plane 

(Figure 1), i.e. ( )2

1y

2

1x1z

1-
ηηηtanφ   += . Similarly, from (5) and (6), the geodetic 
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longitude  λ  is interpreted as the angle, measured in the  z = 0  plane, between a 

line parallel to the x-axis and the projection of the ellipsoidal normal vector onto 

the  z = 0  plane (Figure 1), i.e. ( )
xy 11

-1
ηηtanλ  = . 

 
Introducing the geodetic height h into (2), the geodetic coordinates (h, φ, λ) are 

related to the corresponding Cartesian coordinates (x, y, z) by 

 ( )cosφ cosλ= +x � h , (9) 

 ( )21 cosφ sinλÈ ˘= - +
Î ˚e

y � e h , (10) 

 ( )21  sinφÈ ˘= - +
Î ˚x

z � e h , (11) 

where  h ≥  0,  –π/2 ≤  φ ≤  +π/2,  –π < λ ≤  +π.  Also, when  
x

a  = 
y

a  ≡  a,  i.e.  

x
e =

y
e ≡  e  and  

e
e = 0,  (9)-(11) reduce to the well-known geodetic system on a 

biaxial ellipsoid (e.g. Fotiou 2007). 

 

 

3. Ellipsoidal coordinates (u, β, ω) 

A family of confocal quadrics (second degree surfaces) to the ellipsoid 
0

S  is given 

as 

 
s

S : 
2 2 2

2 2 2
1+ + =

+ + +
x y

x y z

a s a s b s
, (12) 

where s is a real number called the parameter of the family. In Dassios (2012) is 

proved that, for every point  (x, y, z)  in space with xyz ≠ 0 (this excludes the Car-

tesian planes  x = 0, y = 0  and  z = 0)  Eq. (12), which is a cubic equation in s, has 

three unequal real roots 
1
s , 

2
s , 

3
s  such that 

 –
2

x
a  < 

3
s  < –

2

y
a  < 

2
s  < –

2
b  < 

1
s  < +∞ . (13) 

Thus, through each point (x, y, z) in space with xyz ≠ 0 passes exactly one triaxial 

ellipsoid (
1
s  = const.), one hyperboloid of one sheet (

2
s  = const.) and one hyper-

boloid of two sheets (
3
s  = const.). These variables (

1
s , 

2
s , 

3
s ) are known as ellip-

soidal coordinates and have dimensions of length squared. Also, the ellipsoidal co-

ordinate system (
1
s , 

2
s , 

3
s ) is a triply orthogonal system and the principal sections 

(see below) of the coordinate surfaces share three pairs of foci: ( ±  
x

E , 0, 0),  

( ±  
e

E , 0, 0), (0, ±  
y

E , 0), where 
x

E  = 
22

ba
x
− ,  

y
E  = 

22
ba

y
−  and  
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Fig. 2. Ellipsoidal coordinates and Cartesian planes y = 0 (top left), x = 0 (top right) and 

z = 0 (bottom right). Illustration of Eq. (13) is also shown (bottom left) 

 

e
E  = 

22

yx
aa −  are the linear eccentricities (see Figure 2). 

 
Figure 2 displays the Cartesian planes x = 0, y = 0 and z = 0. These planes intersect 

any one of the confocal quadrics either in an ellipse or in a hyperbola, which are 

called principal ellipses and principal hyperbolas of the corresponding quadric. 

From (12), a family of confocal principal hyperbolas is obtained 
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with foci at (0, ±  
y

E , 0). The linear equation 
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represents the two asymptotes of the family of hyperbolas. Also from (12), another 

family of confocal principal hyperbolas is obtained 
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with foci at (±  
e

E , 0, 0). The linear equation 
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represents the two asymptotes of the family of hyperbolas. Note that the confocal 

hyperboloids of two sheets do not intersect the plane x = 0. Finally, when the ellip-

soidal coordinates (
1
s , 

2
s , 

3
s ) reach their limiting values, we get degenerate quad-

rics corresponding to parts of the planes x = 0, y = 0 and z = 0 (see Figure 2). 
 
According to (12) there are, in general, eight points (± x, ± y, ± z) in space, sym-

metrically located in octants, corresponding to the same (
1
s , 

2
s , 

3
s ). Thus, in or-

der to have a one-to-one correspondence between ellipsoidal and Cartesian coordi-

nates, Panou (2014a, b) introduced ellipsoidal coordinates (u, β, ω) by the relations 

 
22

1
bus −= , (18) 

 βcosβsin
2222

2
bas

y
−−= , (19) 

 ωcosωsin
2222

3 yx
aas −−= . (20) 

We pass through  P  a triaxial ellipsoid whose centre is the origin O, its polar axis 

coincides with the z-axis, its major equatorial axis coincides with the x-axis, its mi-

nor equatorial axis coincides with the y-axis and two linear eccentricities have the 

constant values 
x

E  and 
y

E  as above. The coordinate u is the polar semiaxis of this 

ellipsoid, β is the ellipsoidal latitude and ω is the ellipsoidal longitude. Substituting 

(19) into (15), we obtain 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

y

z1
tanβ , (21) 

which leads to the interpretation that the ellipsoidal latitude β characterizes the in-

clination of the asymptotes of the family of confocal principal hyperbolas (14) on 

the plane x = 0. Similarly, substituting (20) into (17), we obtain 

 ⎟
⎠

⎞
⎜
⎝

⎛
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x

y1
tanω , (22) 
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thus the ellipsoidal longitude ω characterizes the inclination of the asymptotes of 

the family of confocal principal hyperbolas (16) on the plane  z = 0  (Figure 2). 
 
Substituting (18)-(20) into (12), we derive the equations introduced by Tabanov 

(1999) and presented also by Dassios (2012) 
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where u ≥  0,  –π/2 ≤  β ≤  +π/2,  –π < ω ≤  +π.  Also, when 
x

a  = 
y

a  ≡  a, i.e.  

x
E  = 

y
E  ≡  E  and  

e
E  = 0, (23)-(25) reduce to the well-known oblate spheroidal 

system (e.g. Heiskanen and Moritz 1967). 

 

 

4. Geometric coordinates (τ, θ, ε) 

Formulas relating geometric (τ, θ, ε) and Cartesian (x, y, z) coordinates are intro-

duced by Caputo (1967): 
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where τ ≥  0, –π/2 ≤  θ ≤  +π/2, –π < ε ≤  +π and 
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Also, when 
x

a  = 
y

a  ≡  a,  i.e. 
x

E  = 
y

E  ≡  E  and  
e

E  = 0, (26)-(29) reduce to 

the geometric system on a biaxial ellipsoid. 
 
In order to give the geometrical interpretation, we pass through P an ellipsoid 
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Substituting (26)-(28) into (30), we can easily derive (29). Thus, τ is the polar 

semiaxis of the ellipsoid 22
τ b

S
−

. The geometric latitude θ is the angle between the 

normal to the ellipsoid 22
τ b

S
−

 containing the point P and the projection of this 

normal onto the z = 0 plane. The geometric longitude ε is the angle between a line 

parallel to the x-axis and the projection of the normal to the ellipsoid 22
τ b

S
−

 con-

taining the point P onto the z = 0 plane (Figure 3). 

 

 
Fig. 3. Geometric coordinates 

 

This interpretation follows easily, considering the normal σ to the ellipsoid 22
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and (26)-(28), i.e. 
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5. Concluding remarks 

In this work, three triaxial coordinate systems have been reviewed, along with their 

geometrical interpretation. Feltens (2009), Ligas (2012a, b) and Bektaş (2014) have 

presented a numerical method to compute the projection Q of a point P along the 

normal to a triaxial ellipsoid. Then, we can compute the geodetic height h by the 

Euclidean distance and the geodetic latitude φ and longitude λ by applying (4) and 

(5), respectively. On the other hand, substituting the known Cartesian coordinates 

(x, y, z) of point P in (12), we obtain a cubic equation in s, from which we can 

evaluate the three real roots 
1
s , 

2
s  and 

3
s . Subsequently, we use (18)-(20) to com-

pute the ellipsoidal coordinates (u, β, ω). Finally, substituting the known Cartesian 

coordinates (x, y, z) in (32) and (33), we compute the geometric latitude θ and 

geometric longitude ε, respectively. The coordinate τ is computed using (12) and 

the parameter 
1
s . 
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