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Abstract: Algorithms for the determination of the transformation parameters from one 

reference system to the other are presented for the case where the data points lie on the 

same surface or curve, while there exist no common data points. Iterative solutions are pro-

posed based on localized surface or curve interpolation and least squares best fitting. Three 

application examples are presented. The first is the matching of two overlapping digital 

terrain models where horizontally gridded height data are referring to two different horizon-

tal and vertical reference systems. The second is the matching of two point clouds with co-

ordinates obtained from two independent scannings of overlapping surfaces, which refer to 

different three-dimensional reference systems. The last example is the matching of veloci-

ties derived from GNSS and accelerometers, with different reference and time systems, 

where the data are velocity component time series, i.e. points on a three-dimensional time-

dependent curve. 

 

 

1. Introduction 

A very common problem in geodesy and surveying is the determination of trans-

formation parameters relating two reference systems, each one established inde-

pendently for a set of points. The relation is determined thanks to the existence of 

points common to both point sets, e.g. through the common subnetwork of two 

overlapping control networks, in the framework of network densification. There are 

applications however within the broader field of geomatics where no such common 

points exist, where the available observational data refer to different point sets on 

the same surface or curve. The common shape of the surface or curve provides the 

information for relating the established reference systems when as usual the geo-

metric form of a set of points is conveniently described using coordinates. We will 

give here three examples from quite diverse application fields and we will sketch a 

possible way of treating this problem in a practically feasible way. From a theoreti-

cal point of view, it may be more attractive, or at least more elegant, to construct an 

analytical form for the curve or surface by interpolation and then consider the prob-

lem of the best fitting of two curves or two surfaces. There are two difficulties in 
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such an approach. The first is related to the “global” interpolation from points to 

curves/surfaces, which requires the more-or-less arbitrary adoption of an interpolat-

ing method and the choice of an analytical (parameterized) description of the 

curve/surface complex enough to adequately describe its physical counterpart. The 

last requirement may be difficult to meet especially when rather complicated 

curves/surfaces are pointwise observed. The second difficulty relates to the choice 

of an adequate measure of the degree of fitting (or equivalently non-fitting) of two 

curves/surfaces and the a priori determination of the overlapping part which will 

enter in the fitting measure. One idea would be to minimize the area/volume be-

tween the two curves/surfaces under comparison; another one would be to mini-

mize the integral of the square of the distances of each curve/surface point from its 

closest point on the corresponding curve/surface. In view of such problems, we will 

pursue here more feasible (though somewhat ad hoc) methods in two steps: an ap-

proximate alignment using principal component analysis and an iterative further 

improvement using localized interpolation and least squares best fitting methods. 
 
In our three following examples two deal with surface matching (digital terrain 

models and laser scanning of surfaces) and one with curve matching (merging of 

co-seismic GNSS with accelerometer data). 
 
There is a considerable literature in the field of pattern recognition and computer 

graphics for matching curves and surfaces in the presence of considerable deforma-

tion either real or due to different perspective views. These are too complicated for 

our case where the only difference between the two objects is due to observational 

noise. A similar problem is that of photogrammetric correlation where homologous 

points and lines are identified by detecting characteristic points and linear or 

nonlinear features. In our cases however, such characteristic points either do not 

exist, or they are so few and vague that they can be used only for pre-processing 

purposes to achieve a first-step approximate matching. 

 

 

2. Approximate matching two point clouds on the same curve or surface 
using principal component analysis 

Let us assume that we have two sets of coordinates 
i

x , 1,2,...,i n= , and 
i
′x , 

1,2,...,i n′= , densely covering a curve or a surface, which refer to different refer-

ence systems. We seek to determine the transformation parameters θ  for rotation 

and d  for translation, according to the coordinate transformation 

(2.1) ( )′ = +x R θ d , 

where 
3 3 2 2 1 1

( ) ( ) ( ) ( )θ θ θ=R θ R R R  is the orthogonal matrix of rotations around the 

three axes with angles 
1

θ , 
2

θ , 
3

θ , and 
1 2 3

[ ]
T

d d d=d  is the translation vector. Re-
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lated to the shape of the curve or surface there are some intrinsic form-related axes 

(figure axes), which, when the observed point cloud is homogenously and suffi-

ciently dense, they can be identified with the help of the dispersion matrix of the 

point coordinates. Identifying the coordinates of the point cloud barycentre as 

(2.2) 
1

1
n

i

in
=

= ∑m x , 

the dispersion matrix is computed by 

(2.3) 
1

1
( )( )

n

T

i i

in
=

= − −∑S x m x m . 

The (unit length) eigenvectors of S  determine the three aforementioned figure 

axes. Thus if 
k k k

λ=Su u , 1,2,3k = , where 
k

u  are the eigenvectors and 
k

λ  the 

corresponding eigenvalues, it holds that 
1 2 3

[ ] =S u u u  
1 1 2 2 3 3

[ ]λ λ λ= u u u  and we 

have the diagonalization 

(2.4) T
=S UΛU , 

1 2 3
[ ]=U u u u , 

1

2

3

0 0

0 0

0 0

λ

λ

λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ . 

It is possible then to apply a coordinate transformation ( )T

i i
= −x U x m� , which 

brings the origin of the reference system at the cloud barycentre and its three axes 

along the directions of the three figure axes. In a similar way, the second point 

cloud has barycentre 1

in i′

′ ′= ∑m x  and dispersion matrix 

1 ( )( )T
i in i′

′ ′ ′ ′ ′= − −∑S x m x m  and its diagonaligation T
′ ′ ′ ′=S U Λ U  determines a 

transformation ( )T

i i
′ ′ ′ ′= −x U x m� , which brings the origin of the reference system 

at the barycentre and its three axes along the three figure axes. These barycenters 

and dispersion matrices have been found as discrete approximations of the surface 

barycentre 1

A
S

dσ= ∫µ x  and of the surface dispersion matrix 

1 ( )( )T
A

S

dσ= − −∫Σ x μ x μ , where A  is the surface area. Therefore, we may as-

sume that these approximate barycenters and the derived approximate directions of 

the surface figure axes coincide to a high degree of approximation with their true 

counterparts. (For a curve we only need to replace the surface element dσ  with the 

length element ds  and the area A  with the curve length L .) 
 

Thus combining the transformation ( )T

i i
= −x U x m�  of the first cloud with the in-

verse transformation 
i i
′ ′ ′ ′= +x U x m�  of the second cloud we have a good approxi-

mation of the transformation from the first cloud to the second 
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(2.5) ( )T
′ ′ ′ ′ ′ ′ ′ ′= + ≈ + = − + = +x U x m U x m U U x m m Rx d� � , 

where 

(2.6) T
′=R U U , T

′ ′ ′= − = −d m U U m m Rm . 

In the above we have assumed that the ordered eigenvalues 
1 2 3
λ λ λ> >  are all dis-

tinct and non-zero. We need therefore to examine the non-regular cases of zero ei-

genvalues and of equal eigenvalues (spectral multiplicity case). When only 
3

0λ = , 

then the cloud points lie on the same plane and the surface or curve are planar ones. 

When only 
2 3

0λ λ= = , then the cloud points lie on the same line. This cannot 

happen for reasonable surfaces and in the case of a curve it means that it is in fact a 

straight line. Since 
2 3

( 0)λ λ= =  we have a case of spectral multiplicity, the conse-

quences of which will be examined in the following. The case 
1 2 3

0λ λ λ= = =  

should be excluded since it means that all cloud points are identical. 
 
In the case of spectral multiplicity, e.g. 

1 2 3
λ λ λ= ≠  only the 

3
u  axis is determined. 

Any pair of mutually perpendicular 
1

u , 
2

u  within the plane perpendicular to 
3

u  is 

a set of eigenvectors. Thus, the principal components can only identify a common 

figure axis for the two coordinate sets but the direction of coincidence under all 

possible rotations around the determined axis must be found by other means, such 

as the use of characteristic points. The same holds for the case 
1 2 3
λ λ λ≠ =  where 

only the 
1

u  direction can be identified. Finally, in the case 
1 2 3
λ λ λ= =  none of the 

three axes can be identified. 

 

 

3. Matching Digital Terrain Models 

An interesting problem is the merging of digital terrain models (DTMs, also called 

digital elevation models DEMs) referring to different horizontal and vertical refer-

ence systems into a unified one (see e.g. Biagi et al., 2011, 2012, 2014, Carcano, 

2014). In the case of two digital terrain models, one of the axes, the vertical one, is 

already common, while the points are located on a rectangular grid as far as their 

horizontal coordinates are concerned. Letting the third Cartesian coordinate to be 

the vertical one the relation between the coordinates in the two DEM reference sys-

tems is of the form 

(3.1) 
3
( )= Θ +x R x d� . 

Once the two reference systems have been brought close to each other, e.g. by the 

principal components analysis described in the previous session, the coordinate 

transformation for small Θ  and d  can be replaced by the linear approximation 
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(3.2) 

x

y

h

x x y d

y y x d

h h d

+ Θ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − Θ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

�

�

�

, 

where x , y  are the horizontal (east, north) and h  the vertical coordinate. We fur-

ther assume that an interpolation scheme provides the heights ( , )h x y′  in the sec-

ond DTM as well as the height derivatives ( , ) ( , )
h

a x y x y
x

′∂
=
∂

 and 

( , ) ( , )
h

b x y x y
y

′∂
=
∂

. Each grid point ( , )i k  of the first DTM has coordinates 
ik
x , 

ik
y , 

ik
h  and transformed coordinates 

ik
x� , 

ik
y� , 

ik
h� . In order to find the transforma-

tion parameters Θ , 
x

d , 
y

d , 
h

d  of the two surfaces we will minimize the sum of 

the squares between the heights in the first DTM and the interpolated heights in the 

second DTM 

(3.3) 
2

2 ( , ) min
ik ik ik ik

ik ik

e h x y hφ ⎡ ⎤′= = − =⎣ ⎦∑ ∑ �

� � . 

In first order linear approximation  

(3.4) ( , ) �

� �

ik ik ik ik
e h x y h′= − ≈  

 
,

,

( , ) ( ) ( )� �

ik ik ik ik

ik ik ik ik ik ik ik h

x y x y

h h
h x y x x y y h d

x y

⎛ ⎞∂ ∂⎛ ⎞′≈ + − + − − − ≡⎜ ⎟⎜ ⎟
∂ ∂⎝ ⎠ ⎝ ⎠

 

 ( ) ( )
ik ik ik x ik ik y ik h
h a y d b x d h d′≡ + Θ + + −Θ + − − =  

 [ ]1 x T

ik ik ik ik ik ik ik ik ik ik

y

h

d
h h a y b x a b h

d

d

Θ⎡ ⎤
⎢ ⎥
⎢ ⎥′ ′= − + − − ≡ Δ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

q z , 

where [ ]
T

x y hd d d= Θz , ( , )
ik ik ik
h h x y′ ′= , ( , )

ik ik ik

h
a x y

x

′∂
=
∂

, ( , )
ik ik ik

h
b x y

y

′∂
=
∂

, and 

( , )
ik ik ik ik
h h x y h′ ′Δ = − . The target function 2

,
( )T

ik iki k
hφ ′= Δ −∑ q z  is minimized by 

setting its derivative with respect to z  equal to zero 

(3.5) 
, ,

( )
2( ) 2 ( )( )

T

T T Tik ik

ik ik ik ik ik

i k i k

h
h h

φ ′∂ Δ −∂
′ ′= Δ − = Δ − − =

∂ ∂
∑ ∑

q z
q z q z q 0

z z
, 

which has solution 1

, ,
( ) ( )T

ik ik ik iki k i k
h

−

′= Δ∑ ∑z q q q  or explicitly 
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(3.6) 
x

y

h

d

d

d

Θ⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
2

2

2
,

( ) ( ) ( ) ( )

( )

( )

( ) 1

ik ik ik ik ik ik ik ik ik ik ik ik ik ik ik ik ik ik

ik ik ik ik ik ik ik ik ik

i k ik ik ik ik ik ik ik ik ik

ik ik ik ik ik ik

a y b x a a y b x b a y b x a y b x

a a y b x a a b a

b a y b x a b b b

a y b x a b

−

⎛ ⎞⎡ ⎤− − − − −
⎜ ⎟⎢ ⎥

− −⎜ ⎟⎢ ⎥= ×⎜ ⎟⎢ ⎥− −
⎜ ⎟⎢ ⎥⎜ ⎟− − − −⎢ ⎥⎣ ⎦⎝ ⎠

∑  

 
,

( )[ ( , ) ]

[ ( , ) ]

[ ( , ) ]

[ ( , ) ]

ik ik ik ik ik ik ik

ik ik ik ik

i k ik ik ik ik

ik ik ik

a y b x h x y h

a h x y h

b h x y h

h x y h

′⎛ ⎞− −⎡ ⎤
⎜ ⎟⎢ ⎥′ −⎜ ⎟⎢ ⎥×
⎜ ⎟⎢ ⎥′ −
⎜ ⎟⎢ ⎥⎜ ⎟′− −⎣ ⎦⎝ ⎠

∑ . 

The obtained values are used to transform the coordinates according to (3.2). Then 

the transformed coordinates can be used as input coordinates for the next iteration 

step until convergence (zero transformation parameters) is achieved. 
 

As a convenient localized interpolation scheme, we propose the fitting to the 2
n  

closest point heights ( , )
i i i
h h x y= , i.e. those on the closest n n×  sub-grid, the poly-

nomial model with 2
n  coefficients 

(3.7) ( , ) ( ) ( ) [ ( ) ( ) ]T T T
h x y x y y x vec= = ⊗φ Aφ φ φ A , 

where 

(3.8) 2 1( ) 1
T

n
x x x x

−⎡ ⎤= ⎣ ⎦φ � , 2 1( ) 1
T

n
y y y y

−⎡ ⎤= ⎣ ⎦φ � . 

From the known heights at the sub-grid points ( , )
i i i
h h x y= , 2

1,2,...,i n= , the co-

efficient matrix is determined according to 

(3.9) 

2 2 2

1

1 1 1
( ) ( )

( ) ( )

T T

T T

n n n

y x h

vec

y x h

−

⎡ ⎤ ⎡ ⎤⊗
⎢ ⎥ ⎢ ⎥

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗⎣ ⎦ ⎣ ⎦

φ φ

A

φ φ

� � . 

Using as origin the center of the n n×  closest point grid and the grid spacings 
x

Δ , 

y
Δ  as length units, it is more convenient to interpolate instead the function 

0 0
( , ) ( , )

x y
h x x y yχ ξ η = Δ + Δ + . In this case, the coefficient matrix to be inverted 

in (3.9) has elements with integer values. The desired interpolated values mat be 



106 Athanasios Dermanis 

 

computed from the inverse relation ( )0 0 0 0( , ) , ( ) ( )
x y x y

x y x yT
h x y

ξ η ξ η
χ

− − − −

Δ Δ Δ Δ
= = φ Aφ . 

 

 

4. Matching two point clouds obtained by laser scanning 

Repeated laser scanning produce coordinates 
i

x , 1,2,...,i n= , and 
i
′x , 1,2,...,i n′= , 

related to two different point clouds on the same surface. The two coordinate sets 

refer to different reference systems, which are related by the general transformation 

relation (3.1). Apart from the fact that all rotation angles 
1 2 3

[ ]
T

θ θ θ=θ  are now 

present, there are two more differences with respect to the previous case of DTM 

matching. The first is that the cloud points are not located on some grid and the 

second that there is no preferable matching direction as is the vertical direction in 

the DTM case. The lack of gridded data calls for a different localized interpolation 

technique. The lack of a single reference direction calls for a three-dimensional 

best fitting principle. We will sketch here a possible way of attacking the problem, 

assuming that the two reference systems have already been aligned to a good ap-

proximation either by principal component analysis or with the use of characteristic 

points. For small values of the transformation parameters the coordinate transfor-

mation can be described with sufficient accuracy by 

(4.1) ( ) ( [ ]) [ ]
i i i i i
= + ≈ − × + = + × +x R θ x d I θ x d x x θ d� , 

or explicitly 

(4.2) 

0

0

0

i i i i x x i i y i z x

i i i i y y i i x i z y

i i i i z z i i x i y z

x x z y d x z y d

y y z x d y z x d

z z y x d z y x d

θ θ θ

θ θ θ

θ θ θ

⎡ ⎤− − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − + = + − +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

�

�

. 

We denote by [ ]× =a A , the 3 3×  antisymmetric matrix with axial vector a , 

uniquely defined by 
32 23 1

A A a= − = , 
13 31 2
A A a= − = , 

21 12 3
A A a= − =  and 

11 22 33
0A A A= = = . 

 
Thus to each point 

i
x  corresponds a transformed point 

i
x� , which will be matched 

with the surface which is created by the interpolation of the points 
k
′x  of the second 

cloud. Let us assume that a localized interpolation has been achieved based on a set 

of points { | }
k i
k K′ ∈x  where 

i
K  is the set of the indices of say the m  closest 

points to 
i

x  among all points 
k
′x  of the second cloud. One convenient form of in-

terpolation is ( , )z z x y=  where z  is one of the coordinates and x , y  the other 

two. We have taken here z  to be the third coordinate, without loss of generality, 

but this may require the use of a new appropriate working reference system. The 

coordinates x , y  serve in this case as intrinsic surface coordinates and the surface 
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is described by [ ]( , ) ( , )
T

x y x y z x y= =x x . For the matching criterion, we need 

to find the surface point  

(4.3) [ ]( , ) ( , )
T

i i i i i i i
x y x y z x y= =x x , 

which is closest to the transformed point 
i

x� . Then as target function for optimal 

matching we may use 

(4.4) ( ) ( ) minT T

i i i i i i

i i

φ = − − = =∑ ∑x x x x e e� � . 

where [ ]
i i i i
= − + × −e x x x θ d . Therefore, we have a typical least-squares problem 

with observation equations 

(4.5) [ ] [ ]

( , )

i

i i i i i i i

i i

x

y

z x y

⎡ ⎤
⎢ ⎥= + × − − = + × − −⎢ ⎥
⎢ ⎥⎣ ⎦

x x x θ d e x θ d e ,   1,2,...,i n= . 

The point 
i

x  is the closest to 
i

x�  when the vector 
i i
−x x�  is perpendicular to the 

surface at the point 
i
′x� . To express this mathematically we will use the two tangent 

vectors at 
i

x , which are tangent to the coordinate lines, namely  

(4.6) 

1

( , ) 0

( , )

x i i

i i

x y

x

z

x y

x

⎡ ⎤
⎢ ⎥
⎢ ⎥∂

= = ⎢ ⎥
∂ ⎢ ⎥∂

⎢ ⎥
∂⎣ ⎦

x
t ,   

0

( , ) 1

( , )

y i i

i i

x y

y

z

x y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥∂

= = ⎢ ⎥
∂ ⎢ ⎥∂⎢ ⎥

∂⎢ ⎥⎣ ⎦

x
t . 

The orthogonality conditions ( ) 0T

x i i
− =t x x�  and ( ) 0T

y i i
− =t x x�  give rise to the 

constraints 

(4.7) ( ) ( , )[ ( , ) ] 0
i i i i i i i

z
x x x y z x y z

x

∂
− + − =

∂
� � , 

 ( ) ( , )[ ( , ) ] 0
i i i i i i i

z
y y x y z x y z

y

∂
− + − =

∂
� � ,   1,2,...,i n= , 

which counterbalance the introduction of the additional unknowns 
i
x , 

i
y . Before 

we proceed, we need to linearize both the observation equations (4.5) and the con-

straints (4.7) with respect to the unknown parameters 
i
x , 

i
y . In linear approxima-

tion we have by Taylor expansions 
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(4.8a) 
( , ) ( , )

( , ) ( , ) ( ) ( )

i i i i

i i i i i i i i

x y x y

z z
z x y z x y x x y y

x y

⎛ ⎞∂ ∂⎛ ⎞
= + − + − =⎜ ⎟⎜ ⎟

∂ ∂⎝ ⎠ ⎝ ⎠
 

 ( , ) ( ) ( )
i i xi i i yi i i

z x y a x x a y y+ − + − , 

(4.8b) 
2 2

2

( , ) ( , )

( , ) ( , ) ( ) ( )

i i i i

i i i i i i i i

x y x y

z z z z
x y x y x x y y

x x x y x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + − + − =⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

 ( ) ( )
xi xxi i i xyi i i

a b x x b y y+ − + − , 

(4.8c) 
2 2

2

( , ) ( , )

( , ) ( , ) ( ) ( )

i i i i

i i i i i i i i

x y x y

z z z z
x y x y x x y y

y y x y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + − + − =⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

 ( ) ( )
yi xyi i i yyi i i

a b x x b y y+ − + − , 

where 

(4.9) ( , )
xi i i

z
a x y

x

∂
=
∂

, ( , )
yi i i yi

z
a x y a

y

∂
=
∂

, 

while the second order derivatives 
2

2
( , )

xxi i i

z
b x y

x

∂
=
∂

, 
2

( , )
xyi i i

z
b x y

y x

∂
=
∂ ∂

, 

2

2
( , )

yyi i i

z
b x y

y

∂
=
∂

, will cancel out in the linear approximation. Replacing the above 

values, as well as 
i i i y i z x
x x z y dθ θ= − + +� , 

i i i x i z y
y y z x dθ θ= + − +�  from (4.2) and 

deleting second order terms we obtain the linearized observations equations 

(4.10) [ ][ ]
i i i i i i

⎡ ⎤
= + − × −⎢ ⎥

⎣ ⎦

θ
x h G p x I e

d
,    1,2,...,i n= , 

and the linearized constraints 

(4.11) 
i i i i

⎡ ⎤
+ + =⎢ ⎥

⎣ ⎦

θ
g Q p B 0

d
,    1,2,...,i n= , 

where 

(4.12a)  

0

0

( , )

i

i i xi i yi i
z x y a x a y

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

h ,  
i

i

i

x

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

p ,  

2

2

(1 )

(1 )

xi i xi i xi yi i

i

yi i xi yi i yi i

a z a x a a y

a z a a x a y

⎡ ⎤Δ − + −
= ⎢ ⎥

Δ − − +⎢ ⎥⎣ ⎦
g , 
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(4.12b) 

1 0

0 1
i

xi yi
a a

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

G ,  

2

2

1

1

xi xi yi

i

xi yi yi

a a a

a a a

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
Q , 

(4.12c) 
1 0

0 1

xi i i xi i i xi

i

yi i i yi i i yi

a y z a x y a

a y z a x x a

− − − −⎡ ⎤
= ⎢ ⎥− − − −⎣ ⎦

B . 

Noting that 

(4.13) 2 2
det 1 0

i i xi yi
D a a= = + + ≠Q , 

we may utilize the inverse 

(4.14) 

2

1

2

11

1

yi xi yi

i

xi yi xii

a a a

a a aD

−

⎡ ⎤+ −
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
Q , 

in order to eliminate the unknowns [ ]
T

i i i
x y=p . Indeed, from (4.11) 

1 1

i i i i i

− −

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦

θ
p Q g Q B

d
, which replaced in (4.10) provides the reduced observation 

equations 

(4.15) [ ]( )1 1
[ ]

i i i i i i i i i i i i i

− −

⎡ ⎤ ⎡ ⎤
≡ − + = − − × − ≡ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

θ θ
b x h G Q g G Q B x I e A e

d d
. 

After carrying out all the necessary tedious calculations and after some astonishing 

term eliminations we find that 

(4.16) 1

2 2

( , )

1
1

xi

i i i

i i i i i i yi

xi yi

a

z x y z
a

a a

−

⎡ ⎤
− ⎢ ⎥≡ − + = ⎢ ⎥+ +

⎢ ⎥−⎣ ⎦

b x h G Q g , 

(4.17) [ ]( )1
[ ]

i i i i i

−

= − − × =A G Q B x I  

 
2 2

1
( ) ( ) ( ) 1

1
1

xi

yi i yi i i xi i yi i xi i xi yi

xi yi

a

a y a z x a z a x a y a a
a a

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − + − + − − −⎣ ⎦⎢ ⎥+ +
⎢ ⎥−⎣ ⎦

. 

The estimates of the unknown transformation parameters are found from the solu-

tion of the normal equations 

(4.18)  

1
1

2 2 2 2

1 1 1 1

ˆ ( , )1

ˆ 1 1

n n n n
T T T i i i

i i i i i i i

i i i ixi yi xi yi

z z x y

a a a a

−

−

= = = =

⎡ ⎤ ⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑

θ
A A A b d d d

d

, 
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where 

(4.19) ( ) ( ) ( ) 1
T

i i yi i i xi i yi i xi i xi yi
y a z x a z a x a y a a⎡ ⎤= + − + − − −⎣ ⎦d . 

The obtained values are used to transform the coordinates according to (4.2). Then 

the transformed coordinates can be used as input coordinates for the next iteration 

step until convergence (zero transformation parameters) is achieved. 
 
A similar localized interpolation scheme as in the DTM case can be implemented, 

utilizing the m  closest points in the ,x y  sense. In this case, the simplifications 

arising from the fact that the DTM data are gridded do not apply any more. 

 

 

5. Integrating co-seismic GNSS velocities with accelerometer data 

Continuous registration of GNSS data during a seismic event allows for baseline-

like solutions between two consecutive epochs, thus providing displacements (Co-

losimo, 2012, Colosimo et al, 2011). For the standard case of observations at equal 

time intervals, these displacements are equivalent to velocities and the GNSS re-

ceiver acts as a velocimeter. Despite the cancelation of tropospheric and iono-

spheric errors, the computed velocities are rather noisy, due to the direct propaga-

tion of remaining noise in single epoch measurements instead of the usual com-

pound ones based on averaging over a small time interval (usually 30 seconds) in 

static GNSS where the receiver is not subject to motion. The noise level is much 

larger than those in velocities computed by integrating accelerometer data, even 

those from very low cost accelerometers (Benedetti, 2015), which observe at much 

higher frequencies. On the other hand, low cost accelerometers, which are easy to 

collocate with GNSS receivers, are suffering from instabilities and must be cali-

brated for nonlinear trend removal. The two velocity records, visualized as two 

time dependent curves, refer to different reference and time systems. The problem 

of time synchronization can be solved a priori using characteristic points, such as 

zero velocity crossings. Application of the principal components method described 

in section 2, showed errors in reference system orientation of the order of 1-5 de-

grees, which have insignificant effects on the transformed velocity component time 

series of the velocity curve (Benedetti, 2015). Here we will briefly outline how to 

achieve an even better accuracy by localized interpolation and least squares match-

ing techniques. The input data are two velocity component time series 

( )G G G

i i
t=v v , 1,2,...,

G
i n= , from the GNSS receiver and ( )A A A

i i
t=v v , 

1,2,...,
A

i n= , from the accelerometer. We need to transform one set, say the accel-

erometer one, in a way that it assumes the GNSS reference system according to 

(5.1) (1 ) ( ) [ ]A A A A A

i i i i i
λ λ= + + ≈ + + × +v R θ v d v v v θ d� . 
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A scale factor of 1 λ+  has been included to account for the possible use of differ-

ent velocity units in GNSS receivers and accelerometers. Since in theory velocities 

are affected by only a rotation of the reference system, d  and λ  should be viewed 

as additional calibration parameters. For the GNSS data, we assume that a localized 

interpolation scheme provides the function ( )G
tv  at each neighbourhood of the A

i
t  

observation epochs. An optimal least squares fitting is obtained by minimizing 

(5.2) 
1 1

[ ( ) ] [ ( ) ]
A A

n n

T G A A T G A A

i i i i i i i i

i i

t t

= =

= − − =∑ ∑e Pe v v P v v� �  

1

[ ( ) [ ] ] [ ( ) [ ] ] min
A

n

G A A A A T G A A A A

i i i i i i i i i

i

t tλ λ

=

= − − − × − − − − × − =∑ v v v v θ d P v v v v θ d . 

This is a typical least squares problem with observation equations 

(5.3)   ( ) [ ] [ ]G A A A A A A

i i i i i i i i i i i
t λ

λ

⎡ ⎤
⎢ ⎥⎡ ⎤≡ − = + × + + = × + ≡ +⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

θ

b v v v v θ d e v I v d e E x e . 

The parameter estimates ˆθ  , ˆd , ˆλ  are provided by the solution of the normal equa-

tions 

(5.4) 

1

1 1

ˆ

ˆ

ˆ

ˆ

A A
n n

T T

i i i i i i

i i

λ

−

= =

⎡ ⎤
⎢ ⎥ ⎛ ⎞ ⎛ ⎞

= =⎢ ⎥ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎝ ⎠ ⎝ ⎠
⎢ ⎥⎣ ⎦

∑ ∑
θ

x d E PE E Pb . 

For simple least squares (
i
=P I ) the solution simplifies to 

(5.4) 

1

0 0

2 2

0 0 0

ˆ
[ ]

ˆˆ [ ]

ˆ

A A

A A G A

T

A A AG A
s s sλ

−⎡ ⎤ − × −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = × −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

θ C m 0 h

x d m I m m m

0 m

, 

where 

(5.5a) 2

0

1

1
[ ]

A
n

A

A i

iA
n

=

= − ×∑C v , 
1

1 A
n

A

A i

iA
n

=

= ∑m v , 2

0

1

1
( )

A
n

A T A

A i i

iA

s

n
=

= ∑ v v , 

(5.5b) 
0

1

1
[ ] ( )

A
n

A G A

i i

iA

t

n
=

= ×∑h v v , 
1

1
( )

A
n

G A

G i

iA

t

n
=

= ∑m v , 
0

1

1
( ) ( )

A
n

A T G A

AG i i

iA

s t

n
=

= ∑ v v . 

Analytical inversion leads to the explicit solution 



112 Athanasios Dermanis 

 

(5.6) 1
ˆ

A

−

= −θ C h , 
2

ˆ 1
AG

A

s

s

λ = − , ˆ ˆˆ [ ] (1 )
A G A

λ= − × + − +d m θ m m , 

where 

(5.7a) 2

1

1
[( ) ]

A
n

A

A i A

iA
n

=

= − − ×∑C v m , 
1

1
[( ) ][ ( ) ]

A
n

A G A

i A i G

iA

t

n
=

= − × −∑h v m v m , 

(5.7b) 2

1

1
( ) ( )

A
n

A T A

A i A i A

iA

s

n
=

= − −∑ v m v m , 
1

1
( ) [ ( ) ]

A
n

A T G A

AG i A i G

iA

s t

n
=

= − −∑ v m v m . 

The obtained values are used to transform the velocities according to (5.1). Then 

the transformed velocities can be used as input velocities for the next iteration step 

until convergence (zero transformation parameters) is achieved. 
 
Localized interpolation is rather simple in this case, utilizing the 2 1n +  closer ep-

och data ( )G G

k n
t

−
v  … ( )G G

k
tv  … ( )G G

k n
t

+
v , where G

k
t  is the epoch closest to the 

relevant accelerometer epoch A

i
t . The polynomial interpolation for each velocity 

component G

k
v , 1,2,3k = , has the form 

(5.8) 2 2

,0 ,1 ,2 ,2 1
( ) ...G n

k k k k k n
v t a a t a t a t

+
= + + + + . 

The coefficients are computed from 

(5.9) 

1
2 2
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2 2
,2

2 2
,2 1

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

G G G n G G

k k n k n k n k k n

k

G G G n G G

k k k k k k

G G G n G G

k n k n k n k n k k n

a t t t v t

a

a t t t v t

a t t t v t

−

− − − −

+ + + + +

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

� � � � � �

�

� � � � � � �

�

. 

 

 

6. Conclusions 

We have presented algorithms for relating the different reference systems in two 

point clouds for three completely different applications, which however share a 

common characteristic, the fact that both points sets lie on the same geometric fig-

ure, a surface or a curve. The common shape of this figure provides the means for 

realizing the required matching. All three algorithms rely on the same strategy: ini-

tial approximate matching and iterative improvement based on linearization, local-

ized interpolation and application of the least squares matching principle. The dif-

ferences in the algorithms emerge from the particularities of each application. In 

the DTM application, the vertical direction is already common and this restricts the 

transformation parameters from one reference system to the other. In both the 
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DTM and the laser scanning applications no scale parameter is used in the coordi-

nate transformation, because it is reasonable to assume that the same unit of length 

is used in both instances, or that any very small difference does not affect the result 

in view of the relatively low accuracy of DTMs or the small distances in laser 

scanning. On the contrary, a scale parameter has been introduced for the GNSS – 

accelerometer application to account for differences in the unit of length, especially 

in the case of low cost accelerometers. 

The point correspondence required for the application of the least squares matching 

principle is realized by matching each point of one set to a point of the locally in-

terpolated surface or curve of the second point set. The correspondence is estab-

lished along the common vertical direction in the DTM case and through time syn-

chronization in the GNSS – accelerometer case, where we have assumed that the 

problem of different time system (in origin and scale) has been a priori resolved in 

an independent manner. Of course, it is rather easy to generalize the algorithm to a 

simultaneous determination of both reference and time system transformation pa-

rameters. In the laser scanning case, the correspondence is realized by assigning to 

each point of one set the closest point of the locally interpolated surface for the 

second set. This complicates matters slightly by introducing as additional un-

knowns two surface coordinates for each interpolated closest point. Fortunately, in 

the linearized case these unknowns can be readily eliminated without need to resort 

to least squares with constraints. 

As possible area for further research we suggest the modification of the algorithms 

using nonlinear least squares without resorting to linearization. These will lead to a 

set of nonlinear normal equations that must be iteratively solved. The difference 

with the usual nonlinear least squares is the fact that the localized interpolation 

needs to be also updated in each iteration step. 
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